
Tail Recursion,
do I have it? how to get it?

Paul Bone

What to expect

What to expect from this presentation.

• Some definitions.
• Do I have tail recursion?
• How do I get it?

We'll mostly be discussing strict languages even though some of
the syntax is Haskell-ish, the semantics are usually not.

We'll also assume that compilers targeting C, Java, etc, cannot
rely on the underlying language to provide LCO/TCO.
Although we assume that compilers targeting ILs such as LLVM,
JVM, BEAM etc and also assembly, can provide LCO.

Tail recursion 2

Self recursion

map f [] = []
map f x:xs = (f x):(map f xs)

map is recursive, because it calls itself.

Tail recursion 3

Mutual recursion

odd 0 = False
odd n = even (n - 1)

even 0 = True
even n = odd (n - 1)

odd can call even and even can call odd, the recursion is mutual.

Each group of such functions is called a strongly connected
component (SCC). Technically even a self-recursive function like
map, or a non-recursive function is a SCC, the SCC just contains a
single item.

Tail recursion 4

Tail position

Tail position is the last thing a function does before it exits. In this
syntax it is the outermost expression on the RHS of =.

f1 = tail_position 1 2

f2 = 1 + (not_tail_position 2)

In f2 it's the addition that's in tail position.

Tail recursion 5

Tail recursion

Tail recursion is when a recursive call (self or mutual) is in tail
position.

In other words, the last thing that the function does is to call itself.
foldl is tail-recursive.

foldl _ [] acc = acc
foldl f x:xs acc = foldl f xs (f acc x)

This call is tail recursive. Or sometimes more specifically: self tail
recursive or mutually tail recursive.

Tail recursion 6

Tail call optimisation (TCO)

Tail call optimisation (TCO) (also called last call optimisation)
ensures that functions use a fixed amount of stack space regardless
of how much they need to recurse (how many items there are in
foldl's list).

Each call can re-use the stack frame of the current call.

Different languages/compilers can (and sometimes promise) to
optimize:

• Only self-recursive tail calls (eg: with a loop).
• Sibling calls.
• Mutually recursive tail calls (eg: with a trampoline, inlining etc).
• Any call in tail position (eg: with a jump).

Tail recursion 7

Sibling call

Like a mutual call, except with some extra constraints. Different C
compilers require different constraints, depending on what they're
willing to optimise. These are usually:

• Caller and callee calling conventions match.
• Return types match.
• Parameter lists either

◦ match completely or
◦ the callee's list matches the initial part of the caller's.

And of course, the call must be in tail position for the optimisation to
work.

Tail recursion 8

Do I have it?

Audience participation!

Quiz question 1

Is this tail recursive?

foldl _ [] acc = acc
foldl f x:xs acc = foldl f xs (f acc x)

Audience participation! Call out Yes! now. Of course, this was the
practice question, we saw it in the above examples.

Tail recursion 10

Quiz question 1a

Is this tail recursive?

foldl _ [] acc = acc
foldl f x:xs acc = foldl f xs (f acc x)

Sometimes the answer is no. Depending on the language/compiler,
debugging and profiling builds can interfere with TCO.

Okay, that was an unfair trick, but I want to introduce it now so I can
refer to it later.

Tail recursion 11

Quiz question 2

How about this?

map f [] = []
map f x:xs = (f x):(map f xs)

Tail recursion 12

Quiz question 2

How about this?

map f [] = []
map f x:xs = (f x):(map f xs)

No, this is not tail recursive. map is not in tail position, : is in in tail
position.

Tail recursion 13

Quiz question 3

But what if the language is lazy?

map f [] = []
map f x:xs = (f x):(map f xs)

Tail recursion 14

Quiz question 3

But what if the language is lazy?

map f [] = []
map f x:xs = (f x):(map f xs)

Yes, When execution enters either branch, it was because the thunk
was forced to WHNF: The cons cell will be constructed containing
two thunks, one for the head, and one for the tail. The tail, containing
the recursive call, will not be evaluated at this time and map will
return the cons cell containing the thunk which contains the
unevaluated recursive call.

However, if + was the symbol in tail position, rather than : then this
would not be tail recursive.

Laziness creates the somewhat analogous problem of space leaks.
Tail recursion 15

Quiz question 4

Okay, so it's not a functional language, but how about the equivalent
Prolog code?

map(_, [], []).
map(P, [X | Xs], [Y | Ys]) :-

P(X, Y),
map(P, Xs, Ys).

Prolog also makes heavy use of recursion, so tail recursion is
important.

Tail recursion 16

Quiz question 4

map(_, [], []).
map(P, [X | Xs], [Y | Ys]) :-

P(X, Y),
map(P, Xs, Ys).

Yes.

• The arguments are unified with their parameters. In particular the
"output" argument is unified with the cons cell, [Y | Ys], whose
head and tail are free.

• P(X, Y) is called, giving a value to Y which implicitly fills in the
aliased head of the cons cell.

• map(P, Xs, Ys) is tail-called since it is the last conjunct in
this clause. It fills in the value for Ys which implicitly fills in the tail
of the cons cell.

Tail recursion 17

Quiz question 5

Mercury

:- pred map(pred(A, B), list(A), list(B)).
:- mode map(pred(in, out) is det, in, out) is det.

map(_, [], []).
map(P, [X | Xs], [Y | Ys]) :-

P(X, Y),
map(P, Xs, Ys).

Maybe this is getting unfair..

Tail recursion 18

Quiz question 5

Mercury

:- pred map(pred(A, B), list(A), list(B)).
:- mode map(pred(in, out) is det, in, out) is det.

map(_, [], []).
map(P, [X | Xs], [Y | Ys]) :-

P(X, Y),
map(P, Xs, Ys).

No. Unlike Prolog, Mercury does not support logic variables
(aliasing). The construction of the cons cell must occur after the
recursive call, and therefore that call cannot be a tail call.

Tail recursion 19

Quiz question 6

Last one

:- pred foo(..., ab, ab).
:- mode foo(..., out, out) is det.

foo(..., a, b).
foo(..., A, B) :-

...,
foo(..., B, A).

There's no construction this time, maybe this is tail recursive?

Tail recursion 20

Quiz question 6

Last question, this time there are two outputs, something you can't
do in most functional languages.

:- pred foo(..., ab, ab).
:- mode foo(..., out, out) is det.

foo(..., a, b).
foo(..., A, B) :-

...,
foo(..., B, A).

No sorry, Mercury must swap the output parameters after the
recursive call, so it is not in tail position.

However in Prolog this is Yes. The variables are passed into the
recursive call by reference, they're swapped before the call.

Tail recursion 21

How do I get it?

Now is a good itme for pizza!

Maybe you don't need it?

Have you considered?

• Just add more memory! (allocate more stack memory)
• Or use a segmented stack

This may be much easier than modifying your code! But the code
will still be inefficient in both time and space.

It also simply shifts the bound of the amount of data you can handle,
you may also crash harder when the system runs out of RAM and
begins to thrash.

Tail recursion 23

Accumulator introduction

map f [] = []
map f x:xs = (f x) : (map f xs)

becomes

map f xs = map' f xs []
map' _ [] acc = reverse acc
map' f x:xs acc = map' xs (f x):acc
The accumulator now stores the information that was previously on
the stack, this trades stack memory for heap memory.

Either the developer or the compiler can perform this transformation.

Tail recursion 24

Reduce the required stack depth

foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f acc0 xs =

let r = foldl' 500 f acc0 xs in
case r of

Complete acc -> acc
Incomplete list acc -> foldl f acc list

data Result input acc = Complete acc
| Incomplete [input] acc

foldl' :: Int -> (b -> a -> b) -> b -> [a] -> Result a b
foldl' 0 f acc xs = Incomplete xs acc
foldl' n _ acc [] = Complete acc
foldl' n f acc0 (x0:xs0) = let acc = (f acc0 x0) in

foldl' (n-1) f acc xs0

Tail recursion 25

Reduce the required stack depth

This technique is useful when your functional language doesn't
support tail recursion, eg: debugging and profiling builds. It works for
code that would be tail recursive if the language supported it.

It uses two loops, when the inner loop has exceeded its depth limit it
returns, freeing the stack it consumed.

The limit is usually tuned manually and therefore the whole
transformation is usually done manually.

Tail recursion 26

Last call modulo constroctor (LCMC)

map _ [] = []
map f x:xs = {

let cons = (f x):_
map' f xs address_of(cons, field 1)
return cons

}

map' f [] result_ptr = {
*result_ptr := []

}
map' f x:xs result_ptr = {

let cons = (f x):_
*result_ptr := cons
map' f xs address_of(cons, field 1)

}

Tail recursion 27

Last call modulo constroctor (LCMC)

Based on the intuition from the lazy functional and Prolog examples,
we can optimize tail-calls in strict functional languages by moving
the construction before the recursive call.

This optimisation can usually only be done by the compiler.

Tail recursion 28

Loops and state machines

Often it's very easy to transform a recursive call into a while loop.

foldl(f, list, acc) {
while (true) {

switch (list) {
case []:

return acc;
case x:xs:

acc1 = f(y, acc);
// Replace the input variables and loop.
acc = acc1;
list = xs;

}
}

}

Tail recursion 29

Loops and state machines

A state machine can be used for mutually-recursive loops.

foo(foo_arg1, foo_arg2) {
foo:

if (...) {
return w;

} else {
bar_arg = x;
goto bar;

}
bar:

... code for bar ...;
foo_arg1 = y;
foo_arg2 = z;
goto foo;

}
}

Tail recursion 30

Trampoline

This works even when the compiler cannot see the whole call graph,
for example there are module boundaries or higher order calls.

typedef void* Func (args);

void driver (Func* entry)
{

struct arg_struct args;

Func* fp = entry;
while (fp != NULL) {

fp = (Func*) (*fp)(&args);
}

}

This has a lot in common with continuation passing style.
Tail recursion 31

Thank you

Mercury
http://mercurylang.org

Plasma
http://plasmalang.org

Paul Bone
http://paul.bone.id.au

These slides are typeset with Prince
http://princexml.com

Tail recursion 32

http://mercurylang.org/
http://plasmalang.org/
http://paul.bone.id.au/
http://princexml.com/

	Tail Recursion, do I have it? how to get it?
	Paul Bone
	What to expect
	Self recursion
	Mutual recursion
	Tail position
	Tail recursion
	Tail call optimisation (TCO)
	Sibling call

	Do I have it?
	Audience participation!
	Quiz question 1
	Quiz question 1a
	Quiz question 2
	Quiz question 2
	Quiz question 3
	Quiz question 3
	Quiz question 4
	Quiz question 4
	Quiz question 5
	Quiz question 5
	Quiz question 6
	Quiz question 6

	How do I get it?
	Now is a good itme for pizza!
	Maybe you don't need it?
	Accumulator introduction
	Reduce the required stack depth
	Reduce the required stack depth
	Last call modulo constroctor (LCMC)
	Last call modulo constroctor (LCMC)
	Loops and state machines
	Loops and state machines
	Trampoline
	Thank you
	Mercury
	Plasma
	Paul Bone
	These slides are typeset with Prince

