

HTTP://www.dotnetrocks.com

Text Transcript of Show #671
(Transcription services provided by PWOP Productions)

Paul Bone Goes Parallel with Project Mercury

June 14, 2011
Our Sponsor

HTTP://www.telerik.com/

Carl Franklin and Richard Campbell

interview experts to bring you insights

into .NET technology and the state of

software development. More than just

a dry interview show, we have fun!

Original Music! Prizes! Check out what

you've been missing!

Transcription by PWOP Productions, http://www.pwop.com Page 2 of 15

Paul Bone Goes Parallel with Project Mercury

June 14, 2011

Lawrence Ryan: .NET Rocks! episode #671,
with guest Paul Bone, recorded live Friday, June 3,
2011.

[Music]

Lawrence Ryan: This episode is brought to you
by Telerik and by Franklins.Net - Training Developers
to Work Smarter and now offering video training on
Silverlight 4.0 with Billy Hollis and SharePoint 2010
with Sahil Malik, order online now at franklins.net.
And now here are Carl and Richard.

Carl Franklin: Thank you very much and
welcome back to .NET Rocks! It's your .NET podcast,
the .NET podcast.

Richard Campbell: That's what we like.

Carl Franklin: That sound kind of vain,
doesn't it? Because there's a lot of .NET podcasts.

Richard Campbell: There is a few.

Carl Franklin: We sound good though.

Richard Campbell: We do something right.

Carl Franklin: Something. Hey, man, what's
up?

Richard Campbell: Not too much. You know,
summer is finally showing up. It's getting warm
around here. The barbeques have been dragged out.
It's time to cook meat and drink beer.

Carl Franklin: Hey, did you see that cookbook
from GrapeCity?

Richard Campbell: Yes, I did. Hey, we're in it.

Carl Franklin: I think they're selling us. So,
here's what GrapeCity did. They got a bunch of .NET
gurus together and asked them for recipes. Richard
has two recipes in there, I've got one and also a lot of
guests that have been on .NET Rocks! people that
you know that you go see speak and all that kind of
stuff so I think you can get them at grapecity.com, but
they're a lot of fun and good food too. Wow, your
paella was ridiculous.

Richard Campbell: It's a bit of work to make, but
it's a good piece when you're done.

Carl Franklin: Hey, let's get started with
Better Know a Framework.

Richard Campbell: I love it.

[Music]

Carl Franklin: Today we're not knowing a
framework, we're knowing a project at CodePlex.

Richard Campbell: Ah, yeah.

Carl Franklin: I'm on a roll here, man.

Richard Campbell: You're liking it, are you?

Carl Franklin:
 mediacompanion.codeplex.co
m, Media Companion is the original free to use movie
manager and organizer that offers full XBMC
integration. I don't even know what that means.

Richard Campbell: Nice.

Carl Franklin: But it sounds important.
Simply put, Media Companion offers the facility to
gather information from the Internet and make this
information available to you in an organized manner.
The information collected includes such things as
posters, backdrops, plot summary, actors and actor
images, ratings, etc. So, what's cool about this is
because it's source code, you can see the code to
scrape movie information from IMDb, to search the
Internet for this kind of data and it shows you where to
get it and how.

Richard Campbell: Nice.

Carl Franklin: It's kind of cool, and also for TV
shows and it's had, let's see, what have we got for
downloads? In the last seven days, about a thousand
downloads and eight ratings, almost five stars.

Richard Campbell: Nice, people like it.

Carl Franklin: Yeah, they like it. Richard,
who's talking to us?

Richard Campbell: I've got an email here from
Jeremy Huppatz and he says, "Gentlemen," and there
is a stretch for you.

Carl Franklin: Yeah.

Richard Campbell: "I'm writing to you guys to
thank you for your ongoing efforts to keep schlubs like
me informed on what's going on in the .NET
community and for being an inspiration to me at both
a professional and personal level."

Carl Franklin: Whoa.

Richard Campbell: Nice.

Carl Franklin: That's a great name for a band,
The Schlubs. I love it.

Transcription by PWOP Productions, http://www.pwop.com Page 3 of 15

Paul Bone Goes Parallel with Project Mercury

June 14, 2011

Richard Campbell: "In the last eight months, I've
finally stepped away from being a full-time permanent
salary man to hanging out a shingle and running my
own consultancy. A big factor at making that decision
was the inspiration I took away from show #368 in
which Carl and Mark Dunn spoke to Steve Smith
about making the jump from permanent employee to
small business operator." That's a while back, that
show. It was like 300 shows ago.

Carl Franklin: That was, yeah. I don't even
think you were there.

Richard Campbell: I wasn't. That was one of the
ones where I was away and you went with Mark and
talked to Steve.

Carl Franklin: Yup.

Richard Campbell: "As a result of that move, I've
developed a newfound sense of self-respect and in
the next two weeks I will have successfully completed
my first consulting project, an enterprise-grade
customer management data warehouse built on SQL
Server 2008 R2 including elements of SSIS, SSAS,
and SSRS. Life is looking great and now I'm seriously
looking at next steps. For me, that will be a move to
split my time between working in IT to pay the bills
and starting to move into a field I'm truly passionate
about. Now that I'm in a house that offers me some
elbow room, I'm able to make effective use of the
home recording gear I've accumulated over the past
10 years..."

Carl Franklin: Oh, geez.

Richard Campbell: "By producing some of my own
tunes, getting some bands through for recordings and
completing a formal qualification as an audio engineer
at SAE."

Carl Franklin: That's awesome.

Richard Campbell: "I'm also looking at closing the
IT dev music loop by creating a .NET infrastructure-
based software solution that handles assets and
workflow management for Cakewalk Sonar X1
production solution and looking to see if I can
integrate that into pro-tools as well."

Carl Franklin: Wow.

Richard Campbell: "Carl's career as an initially
reluctant IT guy who finally moved back to his first
love, making music with talented people, has been a
major source of motivation for me in this area and I'm
truly grateful that I discovered .NET Rocks! Now,
send me a mug, damn it!"

Carl Franklin: Just for the record. I may have
been a reluctant IT guy, but I was a fully exuberant
developer. I'm totally engaged.

Richard Campbell: Yeah. The funny thing is it
tickles your brain in the same way music does.

Carl Franklin: Totally.

Richard Campbell: That concept of mastery that
nothing is ever perfect, it can only get better.

Carl Franklin: Yeah and the creative aspect,
the abstract aspect of it. You know, I used to love
putting together PCs and I still do. I still do. I still love
going to Newegg and buying all the pieces and it all
comes in a box and it's like Christmas.

Richard Campbell: Right.

Carl Franklin: You open it up and you spend
a couple of hours and nowadays they just work, but
man, back in the day there was some serious -- you
remember when motherboards didn't fit in cases?

Richard Campbell: Right.

Carl Franklin: They were just like off by
millimeters and the screws didn't fit? It's maddening,
but standards being what they are, stuff just works
now.

Richard Campbell: These things have evolved.

Carl Franklin: Yeah.

Richard Campbell: Well, Jeremy, thanks so much
for your email. We are inspired back, man. I'm glad
it's working for you. We'll send you a mug down to
Australia.

Carl Franklin: Absolutely.

Richard Campbell: If you've got questions,
concerns, ideas for shows, you can send us an email
at dotnetrocks@franklins.net or post up on our fancy
new website at dotnetrocks.com. We love comments
on shows and heck, even the guests will comment
back.

Carl Franklin: In a perfect world. Richard, I'm
very excited because our guest today is none other
than Paul Bone. Paul is a PhD student at the
University of Melbourne in Australia. He works on
Mercury, a purely declarative logic programming
language. We'll find out what that is in a minute. His
PhD thesis topic is the automatic parallelization of
Mercury programs. A paper describing Paul's recent
work is due to appear in Theory and Practice of Logic
Programming. He will be presenting this paper at the

Transcription by PWOP Productions, http://www.pwop.com Page 4 of 15

Paul Bone Goes Parallel with Project Mercury

June 14, 2011

International Conference of Logic Programming to be
held in Lexington, Kentucky in July. Paul is also, and
you're going to love this, check out this, a visually
impaired downhill skier. Yikes.

Richard Campbell: So you're crazy.

Carl Franklin: Yikes.

Paul Bone: Yeah. Well, my wife said that
since she too stained to do a PhD herself so it's just
the one, just me, so I'm crazy enough to take on a
PhD and ski.

Carl Franklin: Man, I'm a skiing impaired
downhill skier. That's what I am. I got Ski Baba, the
little beginner's slope and then the next one I went to
was like the jaws of death and I went down on my
face the whole way. It was great. Anyway...

Paul Bone: If you're not falling down,
you're not trying hard enough so that's good.

Carl Franklin: Well, Paul, my very first
question is in all the documentations you draw a line
in the difference between logic programming
languages and imperative programming languages.
So what's the difference?

Paul Bone: There are two necessarily
opposites but they often are not associated together.

Carl Franklin: Okay.

Paul Bone: It's more the imperative and the
declarative sort of opposites.

Carl Franklin: All right.

Paul Bone: Most of your listeners have
probably been familiar with imperative programming.
This is you tell the computer what to do and you
usually tell it a sequence of instructions and then you
might use something like any of the NLS. So say you
will leave this condition and do that thing and so on
and you write loops, for loops, and so on and that's
called imperative programming. In declarative
programming, the programmer doesn't tell the
computer how to solve the problem, but it just tells
them to tell the computer what the problem is and
often those descriptions are recursive and so looping
is done through recursion.

Carl Franklin: When people think of
declarative languages probably in a .NET space, we
think of XML, XAML. Those are the kinds of
declarative things that we deal with all the time and
they're looking more and more like languages just
because by expressing something in this declarative
language, something happens. So is this essentially

what you're talking about? Just not action and logic
flow, but actual... I mean, why is it called a logic
programming language then?

Paul Bone: Okay. So the logic part of that
ScriptLogic and declarative are often associated
together. A logic programming language is one that's
rather than built out of statements and expressions,
it's built out of logical goals so when it executes it tries
to prove these goals. For instance, a goal might be
somebody else's grandparent and to set aside that
goal somebody had you find the parent who is the
child of the grandparent but the parent of first child.

Carl Franklin: Yeah, I get it.

Paul Bone: Yeah. So it's...

Carl Franklin: So you give it a series of
givens and then things that it has to prove and it
figures out how to prove it.

Paul Bone: Yeah. it's built out of what's
called honed clauses so you see the thing that it can
curve and then you say the things that that can be
made up from. So whether there's a conjunction of
other goals or a disjunction of other goals and you
can include if they aren't losing things in there like
that.

Carl Franklin: So what kinds of applications is
this type of language, and Mercury in particular, really
good for? What kinds of problems does it solve the
best?

Paul Bone: So when people think of logic
programming, they often think of prologue which I
believe was originally developed to help people with
natural language processing.

Richard Campbell: Yeah, that's a blast from the
past. That's from the 1980s.

Carl Franklin: Way back in the 1980s.

Paul Bone: Yeah. So that's often what it's
been used for in the past, but we've seen that logic
programming is generally useful for writing any types
of programs. Our Mercury compiler is written in
Mercury, for instance.

Richard Campbell: How recursive of you.

Paul Bone: Thank you. This is called self-
hosting when your language can compile its compiler.

Richard Campbell: Right.

Carl Franklin: Yeah.

Transcription by PWOP Productions, http://www.pwop.com Page 5 of 15

Paul Bone Goes Parallel with Project Mercury

June 14, 2011

Paul Bone: And Mercury has been self-
hosting for I think 15 years now. I've got it written
down here. Yeah, 15 years of self-hosting.

Richard Campbell: Wow.

Paul Bone: It's quite an old project. It
started 17 years ago.

Carl Franklin: So let's get back to what kinds
of problems can it solve best. I'm still not figuring this
out.

Paul Bone: Yeah. We're using Mercury for
general purpose programming. It's just that a lot of
what a programmer is doing is logical. So we find that
a programming language that shows them the logic of
what they're writing helps a lot in general.

Carl Franklin: Are we talking about a line of
business applications? Are we talking about scientific
calculations?

Paul Bone: Scientific calculations. They've
been a little curious for a type but suddenly business
applications are. We know of people using Mercury
as a business rules engine to build up rules about
different conditions. Say the client is retired and has
a hundred of this size paid for. This insurance
package is suitable for them.

Richard Campbell: Oh, I see.

Carl Franklin: So it's good for sort of querying
data, would you say?

Paul Bone: Yeah. It is good for that. But I
guess the message I'm trying to say is that it's good
for almost everything.

Carl Franklin: Yeah.

Richard Campbell: This is a general purpose
language although I don't think most developers think
about parallel execution in their day-to-day general
purpose programming.

Paul Bone: Yes. So that's something I'd
like to come to. Because of how Mercury is
organized, we're able to automatically parallelized
programs in Mercury.

Richard Campbell: I see. So the idea is that the
programmer doesn't need to know it's executing in
parallel. It's just going to happen.

Paul Bone: Yes. Yeah. On the program I
can say please make it execute in parallel, but they
don't have to know how.

Richard Campbell: Right.

Paul Bone: When you use an optimizing
compiler, you tell the compiler to optimize your
program harder. It's exactly the same principle.

Richard Campbell: Okay.

Carl Franklin: And where does functional
programming fit in to this?

Paul Bone: So Mercury also supports
functional programming in that some of the basic
concepts that Mercury has predicates and functions.

Carl Franklin: Yeah.

Paul Bone: A function is a predicate that
can only succeed in one way. It only has one end for
any set of inputs.

Carl Franklin: So let's break this down a little
bit for the nonfunctional, non-logical programmer or
listeners out there. Let's go down to brass tacks here.
Predicate, define that for me.

Paul Bone: Okay. So predicates. I
mentioned earlier the honed clause where you say
this thing is true if they spot it at all sector. That can
also be almost thought of as a predicate. It's simple
enough to say that it's a predicate. So a predicate is
something that you can prove to be true for its
parameters, the grandparent example I used earlier.
So a grandparent would take two parameters, the
child and the grandparent, and grandparent is true for
valid pay as opposed to arguments but it doesn't talk
about whether it's computing the child from knowing
that their grandparent is Jim or whether it's computing
that the grandparent is Jim when the child is born.

Carl Franklin: Wow. I must be stupid. I still
don't know what a predicate is. I just want you to
define...

Paul Bone: It's very difficult to explain it
without pictures.

Carl Franklin: Right. Let me just try to
regurgitate what I hear. So it's a set of conditions that
can prove something or a set of givens that can prove
something.

Paul Bone: Kind of. A predicate is a piece
of card that's true. I'm sorry.

Carl Franklin: It's really hard talking about
codes sometimes, isn't it?

Paul Bone: Yeah.

Transcription by PWOP Productions, http://www.pwop.com Page 6 of 15

Paul Bone Goes Parallel with Project Mercury

June 14, 2011

Carl Franklin: I'll go look up and see what
somebody else says here.

Paul Bone: Yeah. So it's a mathematical,
like that of a calculus.

Richard Campbell: Predicates and logic are
statements that are true or false depending on what
their values are.

Carl Franklin: Here's what Wikipedia says on
predicate logic. Predicate logic is the generic term for
symbolic formal systems like first-order logic, second-
order logic. That doesn't help. This formal system is
distinguished from other systems in that its formulae
contain variables which can be quantified.

Paul Bone: That's all true.

Carl Franklin: Two common quantifiers are
the existential - "there exists," and universal - "for all"
quantifiers.

Paul Bone: Yeah.

Carl Franklin: Yeah. I still don't know what a
predicate is.

Richard Campbell: So for all grandparents, there's
a grandchild.

Carl Franklin: Okay.

Richard Campbell: And if grandchild = Bobby then
grandparent = Jim.

Paul Bone: Yes.

Carl Franklin: Okay.

Paul Bone: But Bobby may have more
than one grandparent.

Richard Campbell: Right.

Paul Bone: He may have Grandma Nancy
and so the pair like grandparent of Bobby and Nancy
would also be true. If you would have a called
grandparent that's specified to Jim as a first and I
even then specified some X for the second argument,
it would return either Jim or Nancy, or Jim and then
Nancy when the code will execute the second time for
whatever reason.

Carl Franklin: Okay.

Paul Bone: Because things are true.

Richard Campbell: Well, and you get the hint
parallelism there when you simply refer to the

grandparents. So Jim, however many they are, is
irrelevant and could easily execute in parallel.

Paul Bone: That's true. That's what's
called all poll parallelism because you're looking at
what's -- because when you build up how grandparent
works, you might either follow the mother or father link
in the family tree and those things are disjunctive. So
it's known as all parallelism because of the disjunction
there.

Carl Franklin: Yup.

Paul Bone: I've lost you again.

Carl Franklin: Oh, yeah. And I'm sure our
listeners are going eek all their heads too, some of
them. I don't know, maybe it's just me.

Paul Bone: I hope we could cut a fair bit
of...

Carl Franklin: Oh, no. It's good fun.

Paul Bone: Yup.

Carl Franklin: All right. So I also see from
Wikipedia, which is of course is the answered source
of all truth, that it's sometimes called first-order logic.
Is that also true predicate logic?

Paul Bone: That's also true.

Carl Franklin: Yeah.

Paul Bone: Although Mercury supports
higher auto logic as well.

Carl Franklin: So it looks like it's a logical
statement that contains variables the outcome of
which is not known until those variables are set.

Paul Bone: Yes.

Carl Franklin: But the logic is true no matter
what. Is that right?

Paul Bone: Yeah, that's right.

Carl Franklin: Oh, my God. Oh, my God. I
learned something.

This portion of .NET Rocks! is brought to you by our
good friends at Telerik. Hey, can you ever have too
many free tools to compliment your development
skills? I didn't think so. So our friends at Telerik are
giving you now more than 30 free products for
application development, automated testing, Agile
project management and content management. And
we're talking free, free. Not a trial, not a demo, but

Transcription by PWOP Productions, http://www.pwop.com Page 7 of 15

Paul Bone Goes Parallel with Project Mercury

June 14, 2011

free complete products supported by a community of
over 440,000 developers at Telerik forums. From a
free ASP.NET AJAX, ASP.NET MVC, and Silverlight
controls to the free ORM solution and automated
testing framework to free Agile management tools and
content management systems, all of these and more
are available to you for immediate download at
www.telerik.com/freestuff. Most of the free products
can be use for commercial purposes and give you
access to supplemental support resources such as
documentation and forums. Go to
www.telerik.com/freestuff now and take full advantage
of the available free of charge products, and don't
forget to thank them for supporting .NET Rocks!

Paul Bone: You'd be relieved to know that
most Mercury programs don't actually use all of these
stages. Most of them are very simple and they're
what's called deterministic.

Carl Franklin: Okay.

Paul Bone: So that means that unlike
Bobby who has up to four grandparents, it means that
for any given input there's exactly one answer.

Richard Campbell: All right.

Paul Bone: It's not easy in a family
example. Let's use you use the example of my whole
program. So the first predicate that the Mercury
runtime system calls when it starts your program is
the main predicate which runs your whole program
just like in C, and mine is true for a valid execution of
your program and there's only -- in the deterministic
program there's only one valid execution.

Richard Campbell: Right. This is like the square
root of nine will always return three.

Carl Franklin: I see.

Paul Bone: Right.

Richard Campbell: As opposed to a
nondeterministic function like what is the time.

Paul Bone: That's right.

Richard Campbell: Which each time you're asking
you get back a different value.

Carl Franklin: Yeah.

Paul Bone: Yeah. If you would give it the
parameter I'm asking you now when you ask what is
the time, then that value of now there's still only one
answer which is how we get around the problem of
getting a file on the disk or reading input from the user
and so on because if I open the file on the disk it

might exist but then if I close it again and open it later
somebody might have deleted it in the meantime and
that would be a different result.

Richard Campbell: Sure.

Paul Bone: For what looks like the same
input. So, to avoid those problems and actually be
able to program practically, we pass around what we
call the I/O state which represents the world outside
the program.

Carl Franklin: Yeah.

Richard Campbell: It's your nowness.

Paul Bone: Yup. So if you don't see the
variable in the program you know that it can have no
effect on the outside world which is a really lovely
thing to debugging.

Carl Franklin: Whoa. What a really strange
and beautiful way to program. I mean, it's sort of
sinking in that it's a totally different way to think about
it, about how to interact with the computer.

Richard Campbell: Yeah. It's only penetrating me
to the point where I'm just getting chills about it.

Carl Franklin: Yeah. I'm with you, buddy, I'm
with you. I think a lot of C#, VB.NET business
developers that listen to the show sort of hopefully
build that same twinge of I'm beginning to get it.

Paul Bone: Yeah. Can I run through
another example?

Carl Franklin: Yeah.

Paul Bone: So my favorite example is a
Random Number Generator. Everybody knows that
you call -- I mean I don't know C# but I know C. In C
you would call REN with another parameter and you
keep getting back different numbers. So that to be
able to work what we have to do is pass the current
state of the Random Number Generator and when it
returns it not only gives you your random number but
it has to give you the new state of the Random
Number Generator which you'd use next time you call
them.

Carl Franklin: What I know about Random
Number Generator is they're not random. They're
based on some number, usually a number of ticks
that have happened since a certain time which is a
number that's big and changes all the time, scrambled
up, moved around, mathematized, etc, and that's
used as a seed to generate a pseudo random
number. But random number, I know that it's a very
academic thing and people say, oh, that's not random.

Transcription by PWOP Productions, http://www.pwop.com Page 8 of 15

Paul Bone Goes Parallel with Project Mercury

June 14, 2011

Yeah, because if the seat is the same you're going to
get the same number through the Random Number
Generator.

Paul Bone: And each time you call REN,
the state or the seat changes.

Carl Franklin: Yeah.

Paul Bone: But of course if you want
something to change in purely declarative
programming, you have to be able to see a variable
for it in the source code that you're writing otherwise
you know that it can't possibly change so we have to
see the state of the Random Number Generator being
passed around.

Carl Franklin: I see.

Paul Bone: So this is really cool when you
start working with data structures. If you're managing
a dictionary and you insert an item into a dictionary,
what you get back is a new dictionary. The old one
can still exist and then you start working with the new
dictionary. You might want to delete a different item
out of the dictionary. The previous versions of the
dictionary still exist in memory.

Richard Campbell: Right.

Carl Franklin: So they're immutable.

Paul Bone: Yeah. And now the memory
between them is actually shared like the items
themselves and often much of the structured
dictionary. So this becomes really cool when you
want to implement undo. All you have to do is revert
it.

Carl Franklin: Oh, sure.

Richard Campbell: Because everything is still
there.

Paul Bone: Yeah.

Richard Campbell: But this is also part and parcel
with best practices with parallelism because as soon
as memory is mutable you now have raised
conditions and blocking and so forth to protect
memory. If it's immutable, you're just writing new
copies of things so there's no conflict between
multiple threads executing on it.

Carl Franklin: And copying all that data, you
know, memory is cheap but does it get expensive
when those data structures are huge?

Paul Bone: Not when the data structures
are huge, but when you make many modifications to

the data very quickly that's when -- because often
when you make a small modification to a lot of data, it
only allocates a few cells.

Carl Franklin: Oh, sure.

Paul Bone: If you've got a binary tree and
you delete or insert a new item, on average it only
modifies or reallocates login items in the tree so it's
just much smaller than the amount of memory that the
tree uses anyway.

Carl Franklin: So that means even though it's
immutable and you get a new collection, the items in
that collection are still shared.

Paul Bone: Yes, that's right.

Carl Franklin: So it's really the metadata
about the collection, the list, that's immutable.

Paul Bone: Yup. Well, that's not even
mutable. You get a new version of the collection and
you can still see the old collection.

Carl Franklin: Yeah.

Paul Bone: You still got a reference to it if
you want to keep that old reference around. If you
like all of the old reference, the garbage collector will
get it.

Richard Campbell: I see.

Carl Franklin: Now also in Mercury is kind of
a weird idea but I'm very curious to find out how it
works. Declarative debugging.

Paul Bone: Yeah. So that works using the
same ideas because nothing in memory is ever
changed and you have to -- for something to have
changed, you need to explicitly be able to see it in the
program, so all state is explicit. Then any node in
your call graph represents that part of the program
like that's some call graph of a program. Are you still
with me?

Carl Franklin: Okay.

Paul Bone: Yeah. I mean are you
following?

Carl Franklin: So far.

Paul Bone: Yeah. So, if the debugger can
ask the programmer, "Hey, see this node in the call
graph? Does it look good to you?" and the
programmer can say yes or no. If the programmer
says no, that node in the call graph, there's a
problem, then an automatic tool, what we call a

Transcription by PWOP Productions, http://www.pwop.com Page 9 of 15

Paul Bone Goes Parallel with Project Mercury

June 14, 2011

declarative debugger can search below that node in
the call graph to its children, the things it calls and ask
the same question of nodes and this can help the
programmer assign where the bug is.

Richard Campbell: So essentially they're stepping
backwards through all those iterations until they find
when things made sense and the transition from when
they made sense to when they didn't is where the bug
lives.

Carl Franklin: So that's a very nice way to
pinpoint problems.

Paul Bone: Yeah. What we'd like to do, I
don't know if we've -- I know that somebody has
worked on this in the past, but I don't how complete
the support for this is. But this is going to test weight
and let's say you've got a thousand tests which is
pretty normal, you might have some that pass and
some that fail and if you have coverage data for each
of those tests and you can write no in the call graph
whether the test executes and passes old files or
pass more often than it fails and so on, you know
more data are in the way your bug is and you don't
necessarily need to ask programmers so often do you
think the bug is in this part of the program?

Richard Campbell: Right.

Paul Bone: So I mean I'd like to say these
programs debug themselves and they should be able
to probably do 90% of the debugging themselves.

Richard Campbell: But then, yeah, your
declarative part will be basically identifying the
intended state at each of the iterations.

Paul Bone: Yeah. So that's something that
an automatic program can never do. It depends on its
weight. It has an idea about which things relate to
working, which things relate to right result and which
things relate to the wrong one.

Carl Franklin: Wild.

Richard Campbell: Yeah, I know. I'm getting this
weird recursive thought like, well, if you know where
my bugs why don't you just write the code in the first
place.

Carl Franklin: That's right. What do you need
it for? Yeah.

Paul Bone: Yeah. And so that's it, it's
because the whole philosophy behind this is that you
only need to tell the computer what the problem is
that you're trying to solve and not have to solve it.

Richard Campbell: Right.

Carl Franklin: That is weird.

Paul Bone: That goes back to that idea.

Richard Campbell: Well, yeah. And so then the
declarative debugging part of this is saying this is the
solution I expect you to get to figure out where you
went wrong because that is not the solution you gave
me.

Paul Bone: That would be great, yeah. So
I think we're not there yet, but...

Carl Franklin: What is automatic parallelism?

Paul Bone: So yes, it's the system part of
my research but first I'd like to -- so we saw earlier
that without side effects, without -- that it's easy. We
saw that it's very easy to determine if running two
things in parallel is safe because we can see what the
dependencies they have on one another and whether
state can change when they don't expect it and so on
and therefore whether it's safe to run them in parallel
or not. So determining whether something is safe is
trivial in Mercury and the hard part is determining
what things should be run in parallel to make the
program more efficient.

Carl Franklin: So when you say it's trivial to
determine if something is safe, does the safetiness of
a variable, an object, whatever you call them, does
that change as the program changes or is known from
the beginning?

Paul Bone: It's known during compile time.

Carl Franklin: Okay.

Paul Bone: So it isn't something that the
programmer can look at the source code and see very
obviously.

Carl Franklin: So you have this parallel
conjunction operator, the upper sand. So a
conjunction, that's conjoining two things together?

Paul Bone: Yup. So in the grandparent
examples that we were using, that has to find with a --
let's say to prove that X is his grandparent, to find
some Y which is the first parent of X and then find a Z
which is the first parent of Y. So those two call the
parents conjoined. You have to satisfy both systems
in order to satisfy grandparent.

Carl Franklin: Right.

Paul Bone: Which is what we mean by
conjunction.

Transcription by PWOP Productions, http://www.pwop.com Page 10 of 15

Paul Bone Goes Parallel with Project Mercury

June 14, 2011

Carl Franklin: Okay.

Paul Bone: So a parallel conjunction is just
one that says try and improve both of these things at
the same time.

Richard Campbell: I'm not worried about what
order they're executing.

Paul Bone: Yeah.

Richard Campbell: But that's declarative
parallelism and that's clearly the developers saying
you can do this in parallel.

Paul Bone: Yes. The benefit there is that
the programmer doesn't need to worry about locking.

Richard Campbell: Yeah, no memory protection.
No mutex. It's none of that stuff.

Carl Franklin: So automatic parallelism then
avoids the problem of the programmer having to know
where to optimize.

Paul Bone: That's exactly right. So when
many programmers are asked to optimize their
programs, the smart programmers reach for profilers
because people know that programmers aren't very
good at taking and naming the parts of their program
that contribute the most to its execution like the
slowest parts that are worth optimizing.

Richard Campbell: Right.

Paul Bone: So we use profilers to show us
what things should I optimize.

Richard Campbell: Yes. Where is my program
spending its time?

Paul Bone: Exactly. Usually by looking at
1% of the program and optimizing that, you can get
90% of the benefit or something like that.

Carl Franklin: Yeah.

Richard Campbell: Pareto's Law applies.

Paul Bone: Yeah. So what we want to do
is use the same concepts for parallelizing programs
because parallelism is essentially an optimization.

Richard Campbell: Right.

Paul Bone: It's difficult for the compiler to
know which parts are going to be slower than others
that's why we need to use the profiler here. So the
programmer would compile that program for profiling,
run it on some test data which would give them a

profile and they can give that profile an automatic
parallelization tool.

Carl Franklin: Wow.

Paul Bone: That tool will be able to look at
the profile of the program and understand where the
hotspots are and find places where there are two or
more things that can be done in parallel and that are
costly enough to be worthwhile doing in parallel.

Richard Campbell: Because there's an overhead
to parallelism and if it doesn't really give you much
benefit it will actually slow things down.

Carl Franklin: Yeah. There's such a thing as
too much of a good thing.

Paul Bone: Yeah. If you parallelize too
much of your program, I mean you've got what? A
four-core, eight-core machine? If you parallelize too
much of it you'll have 1,000 or more independent little
tasks to do and only eight cores to do them on.

Richard Campbell: Right. And your processors
are going to spend most of their time context
switching to execute each of those tasks and they're
actually doing the work.

Paul Bone: Exactly. So what people have
done -- I mean parallel, automatic parallelism has
been a research topic in the past, as you've said
probably well back in the 1980s when people were
looking at these men, but the mistake that a lot of
people made was to parallelize too much of the
program. We would have parallelized only a couple
of places and only the places that give you the most
benefit.

Carl Franklin: At Franklins.Net right now, you
can get a DVD with over 11 hours of Billy Hollis on
Silverlight 4.0 or 14 hours of Sahil Malik on
SharePoint 2010 each for only 695. Order online at
www.franklins.net. Are you looking to change jobs?
Infusion Development has offices in New York City,
Toronto, London, Dubai, and Poland. Infusion has
hired a whole handful of happy .NET Rocks listeners.
Contact me for an introduction at carl@franklins.net.

Richard Campbell: Well, the other thing is it in the
1980s multiple core machines were incredibly rare
and expensive. You only had one core and it was a
pretty simple one at that and parallelism just didn't do
much for you.

Paul Bone: And only in the consumer's
field there were some heavy ion service that had
many cores...

Richard Campbell: Right.

Transcription by PWOP Productions, http://www.pwop.com Page 11 of 15

Paul Bone Goes Parallel with Project Mercury

June 14, 2011

Paul Bone: At lease they weren't coarse.
They were old chips or old cards, I'm not sure. I'm
speaking beyond my years there.

Richard Campbell: But I just think this has become
so much more relevant because Intel is shipping
experimental quantities of 80-core processors in one
chip.

Paul Bone: Yeah. And I asked Intel for a
48-core chip and they said no.

Carl Franklin: Oh.

Richard Campbell: Ooh.

Paul Bone: But yeah, that would have
been an awesome test bed.

Richard Campbell: You guys aren't cool enough
for a 48-core chip? Because this is pretty cool.

Paul Bone: Well, we actually looked at the
48-core chip and found that it didn't have any
hardware level case coherence mechanisms which
means that the way Mercury is written at the moment,
especially the garbage collector which is we've
borrowed the bone garbage collector, which is a
popular conservative garbage collector for C#. The
bone garbage collector and the Mercury runtime are
written to assume that the machine has some kind of
cache coherence and not programming without a
cache coherence is more than difficult. So, it's
something that we need a couple of use to get ready
for.

Carl Franklin: Case coherence, is that what
you said?

Richard Campbell: Cache.

Paul Bone: Cache.

Carl Franklin: Oh, cache, right.

Paul Bone: Oh yeah, sorry. American
people say cache.

Carl Franklin: Yeah.

Paul Bone: In Australia we say cache.

Carl Franklin: Okay. That's radical, dude.

Paul Bone: Right.

Richard Campbell: So one of the big challenges
when you actually start to execute things in parallel is
that the debugging gets so much more complex.

Paul Bone: Yeah. Well, the debugging,
because parallelism is deterministic in Mercury,
debugging isn't an issue. Not for getting the correct
result out of your program, but to make sure that it
executes efficiently is difficult.

Richard Campbell: There are interesting tools in
the latest version of Visual Studio that help you see
whether you're really executing effectively in parallel.
The task you've broken up, do more than one thing
and run it at the same time even if four things run at
once, the three of them wait around while one of them
finished. I mean that whole thing can be visualized in
a profiler.

Paul Bone: Yeah, that's exactly right. So
this is where I hope you are going. So we've found
barge for the lack of a better word, a visual part file of
it has been developed for Haskell, for parallel Haskell
programs.

Carl Franklin: Nice.

Paul Bone: This was convenient because
Haskell's runtime system is similar to us so we've
been able to adopt it to work with Mercury.

Carl Franklin: That's very cool.

Richard Campbell: We never give a lot of love to
Haskell.

Carl Franklin: Well, we did. We did a show
on Haskell, did we not?

Richard Campbell: Yeah. The problem is that you
just said it services only .NET space. I mean,
Mercury at least has a C# library of some kind.

Carl Franklin: Ping, you just said the magic
word. I was wondering what was the connection
between .NET and Mercury.

Paul Bone: Yes. So if you want you can
tell the Mercury compiler rather than to generate C
code or Java code which it supports, you can tell it to
generate C# code which then it will use Microsoft
tools to compile.

Richard Campbell: Wow.

Paul Bone: I haven't done it myself.

Carl Franklin: How? How does...? How do
you get from a functional declarative language to an
imperative expression?

Transcription by PWOP Productions, http://www.pwop.com Page 12 of 15

Paul Bone Goes Parallel with Project Mercury

June 14, 2011

Paul Bone: The Mercury compiler just
decides how best to execute your code. It's the same
way we go about generating C code.

Carl Franklin: So is it going to use threads.

Paul Bone: Yeah.

Carl Franklin: It is.

Paul Bone: So it would use the -- I'm not
sure in .NET. I use threading in Java. Is it similar to
that in which you use a thread object?

Richard Campbell: Yeah.

Carl Franklin: Yeah. Well, there are a lot of
great new parallel tools in .NET as well and I would
hope that it would use some of that stuff like the Task
Library.

Richard Campbell: Yeah. But I'm betting that's too
new for this.

Paul Bone: It might be too new. So there's
a thread library analysis standard, there's a thread
module in analysis standard library which if that
supports C#'s threading stuff then you're good to go.
You unfortunately don't get to use parallel
conjunctions but you do get to use more explicit
parallelism. So the parallel conjunction operator and
the automatic parallelization, these are only supported
on the low level C backend unfortunately.

Carl Franklin: Okay.

Paul Bone: I'm sorry to disappoint you.

Carl Franklin: No, no. That's all right. I know
this sound like I'm just asking the same question but
give me some more practical uses that a line of
business developer can take Mercury, generate C#
code and generate code that's cleaner and better than
something they could have written themselves. Are
we talking mostly in middle tier code here?

Paul Bone: Yeah. That would be where I'd
use it. I know of a business that uses Mercury in
order to interface with both Java and .NET code. The
clients may have libraries that are written in Java or in
.NET and then they've written, like I've said before,
their business rules engine where they choose which
insurance or which plan like a mobile phone plan the
customer is eligible or best suited for using NMF and
that engine is written in Mercury. And then they want
to integrate that with the software that the company
already has which maybe in .NET or in Java. So this
is mission critical.

Carl Franklin: Yeah.

Paul Bone: Yeah. I don't know if you've
heard of them.

Carl Franklin: No, I haven't.

Paul Bone: The C# backend is actually
their work. So they have contributed that to Mercury.

Richard Campbell: That's actually this company
that's been using it, they wanted to have it work in IL
and so they went to the trouble of actually building
themselves.

Paul Bone: But they build the C# backend.
Previous to that we did have a .NET IL backend.

Richard Campbell: Oh, I see.

Paul Bone: Which was a separate project.
The Mercury project was given a grant by Microsoft to
build that. Unfortunately, now the .NET's immediate
language has moved on in versions and so we're no
longer compatible.

Richard Campbell: Oh, I see.

Paul Bone: There's nobody currently
maintaining that. So it's not useful at the moment
because .NET has moved on.

Richard Campbell: So the old IL version that you
had is broken, but the C# version works.

Paul Bone: That's right.

Richard Campbell: Okay.

Paul Bone: And the idea of the we chose
to use C# in the second version rather than in your IL
version because C# is less likely to change as
Microsoft...

Richard Campbell: Yeah. You'd get caught up
with the same problem. It will get broken again.

Paul Bone: Exactly.

Carl Franklin: Right.

Paul Bone: So I mean they want to keep
C# the same because that way people can still use
their programs. So it makes sense to be compatible
with C# rather than IL.

Richard Campbell: I guess the question is why
would I use this over the Task Parallel Library or
anything in the new .NET 4.0 parallelism features?

Transcription by PWOP Productions, http://www.pwop.com Page 13 of 15

Paul Bone Goes Parallel with Project Mercury

June 14, 2011

Carl Franklin: And I think you probably are
not going to really understand that until you get your
hands on it and actually see the code.

Paul Bone: Yeah. I've passed certainly
those tools. So I'm tentatively guessing those tools
are probably great if you know the problem that you're
trying to solve decomposes well for parallel execution.
Say it's image manipulation or right tracing or
something like that that decomposes well, you're
probably best off using a library like that where
Mercury sorts our parallels and __________ 47:37 it's
not obvious to the programmer how they should
parallelize something and that's the problem we're
trying to solve. It's not productive to give
programmers tools that are equivalent to those they
already have.

Richard Campbell: Yeah.

Paul Bone: So, what we're building here is
does data parallels.

Richard Campbell: So the goal is automated
parallel always.

Paul Bone: Yeah. So it shouldn't matter
what the shape of your computation looks like to the
automatic parallel relation tool.

Richard Campbell: They shouldn't be in the
operative world.

Paul Bone: Even if the program in the
future and the way it would get parallelize changes,
you just rerun the analysis tool and it's parallelized
again without you having to do any of it to update it.

Richard Campbell: Now is this actually your PhD
thesis? Is this how it's going to happen?

Paul Bone: That's right.

Richard Campbell: The question is, are you going
to use your PhD?

Paul Bone: Well, whether I succeed or not
I believe that I'll be successful in getting a PhD. I may
be able to prove why doing this is impossible.

Richard Campbell: Right.

Paul Bone: And then save other
researchers the time just looking at it. I don't think
that's likely.

Richard Campbell: Right.

Paul Bone: But it's something that could
happen.

Carl Franklin: You know the quest for truth
and understanding is wonderful when you know that
whether you succeed or fail, you succeed.

Paul Bone: Yeah. Because either way you
learn something.

Carl Franklin: That's right.

Paul Bone: The risk that's just about
finding out something that nobody on this earth knew
before.

Carl Franklin: Yeah.

Paul Bone: That's the thing that makes my
spine tingle.

Carl Franklin: Yeah, absolutely.

Richard Campbell: Contributing to the science.

Paul Bone: Yeah, that's it.

Carl Franklin: Tell us a little bit about the
ICLP 2011. What is that event again?

Paul Bone: That's the International
Conference of Logic Programming. It's held in
Lexicon, Kentucky this year.

Carl Franklin: What kinds of things go on at a
logic conference?

Paul Bone: This is very much an academic
conference. People will bring their papers about
different ideas in logic programming and related fields
and present them there. So I'll be presenting my work
that I've done on trying to calculate whether a
particular parallelization is beneficial or not due to
dependencies between the parallel tasks.

Carl Franklin: Do you ever get the feeling
your brain is just going to explode?

Paul Bone: Actually no.

Carl Franklin: No. It tickles. It feels good.

Paul Bone: The more and more I try, the
more I realize I don't know. Yeah, it's very much that I
don't know how to do it yet.

Carl Franklin: It's so cool.

Richard Campbell: There's always more.

Paul Bone: Yeah. So I'm really excited
about presenting there because it will be chance for

Transcription by PWOP Productions, http://www.pwop.com Page 14 of 15

Paul Bone Goes Parallel with Project Mercury

June 14, 2011

me to meet other researchers and find out what
they're doing and also get their feedback on my work
so it's a big deal for me.

Carl Franklin: So let's call out the website for
Mercury. You made a TinyURL for us?

Paul Bone: So it's
tinyurl.com/mercuryproject.

Carl Franklin: Awesome.

Paul Bone: And you can find
documentation, and downloads, and research papers
there.

Carl Franklin: This will run on MPC?

Paul Bone: Yeah. This runs on Windows
and Mac and Linux.

Carl Franklin: All of the above, huh.

Paul Bone: And probably all the types
unique to it. I don't think we've tried lately.

Carl Franklin: When your website talks about
backend, that means this is the code that it generates.
Right?

Paul Bone: The Mercury compiler can
generate two types of C code, the low level and high
level C, they're just different strategies for getting to
the same place. It can generate Java and C# code as
well.

Carl Franklin: And Erlang?

Paul Bone: I think it generates Erlang. I
can't remember how polished that backend is.

Carl Franklin: Yeah. It says it's in beta.

Paul Bone: That's the matter with my
memory mold on the backend itself.

Carl Franklin: The website says it's in beta.

Paul Bone: Okay.

Carl Franklin: One guy out there is going, oh,
damn.

Richard Campbell: My Erlang.

Paul Bone: Yeah.

Carl Franklin: So cool. And then native code,
that compiles to assembler?

Paul Bone: We do that through the low
level same backend or through any of the same
backend. We generate -- the low level code
generator gives you that look like assembly code. It's
an abstract machine code for the Mercury abstract
machine which is then compiled using the end. A lot
of nasty use the same preprocessor and so then you
can generate the same code from there. The
download is on the website. When you download the
source code from Mercury, it already contained
precompiled free code in there so you don't need a
Mercury compiler installed to install Mercury compiler.

Carl Franklin: Okay. It seems to me that if
you're doing that low level C or assembler or the inline
assembler that the C compiler, pre-compiler creates,
you're generating one heck of a performant power
house of a program.

Paul Bone: Yeah. Mercury is pretty
efficient. We made all the other prologues, not that
Mercury is a prologue. We made prologues for
performance and we haven't compared it against
other languages lately. I heard anecdotal reports that
Mercury cards can get close to the performance of C
and I've also heard anecdotal reports that it will be
Java.

Carl Franklin: Well, we should mention one
more thing which is that your research is funded.

Paul Bone: That's right.

Carl Franklin: Let's give some props out to
those who make this possible.

Paul Bone: So yeah. I like to thank the
Australian government for my Australian post-
graduate award scholarship and National ICT
Australia, my top op scholarship. So they have to be
thanking for me being able to spend a significant part
of my life working on this.

Carl Franklin: That's fantastic. Thanks to
them very much.

Paul Bone: Yeah.

Carl Franklin: Well, do you think you might
want to do a dnrTV show on this to show people
exactly what this looks like?

Paul Bone: Yeah.

Carl Franklin: If my brain doesn't explode.

Paul Bone: It will definitely be easier with
pictures.

Carl Franklin: Okay.

Transcription by PWOP Productions, http://www.pwop.com Page 15 of 15

Paul Bone Goes Parallel with Project Mercury

June 14, 2011

Paul Bone: It may even be great with a
demo.

Carl Franklin: Awesome. Let's make that
happen.

Paul Bone: Yeah. If August is okay with
you, guys, that would be -- or like July or something.

Carl Franklin: Absolutely. Paul, is there
anything else that you want to say before we call it a
show?

Paul Bone: Oh, that's right. I want to thank
you for inviting me to the show.

Carl Franklin: Oh.

Paul Bone: Yeah.

Carl Franklin: It's out pleasure.

Paul Bone: Yeah. Thank you to your
invitation to speak on .NET Rocks! It's been a
pleasure speaking with you and having my brain tick
about Mercury.

Carl Franklin: Well, I'm sure our listeners
really appreciate it. Check the website, the .NET
Rocks! website because people do leave comments
and they may have questions for you.

Paul Bone: Cool.

Carl Franklin: All right, great.

Paul Bone: All right.

Carl Franklin: Thank you, Paul. Thank you
for listening, dear listeners. We'll see you next time
on .NET Rocks!

[Music]

Carl Franklin: .NET Rocks! is recorded and
produced by PWOP Productions, providing
professional audio, audio mastering, video, post
production, and podcasting services, online at
www.pwop.com. .NET Rocks! is a production of
Franklins.Net, training developers to work smarter
and offering custom onsite classes in Microsoft
development technology with expert developers,
online at www.franklins.net. For more .NET Rocks!
episodes and to subscribe to the podcast feeds, go to
our website at www.dotnetrocks.com.

