
Automatic Parallelism in Mercury

Estimating the overlap between dependent
computations

Paul Bone, Zoltan Somogyi and Peter Schachte
The University of Melbourne

National ICT Australia

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 1 / 29



Automatic Parallelism in Mercury Introduction

Motivation

Multicore systems are ubiquitous, but parallel programming is hard.

Pure declarative languages do not allow side-effects; all effects must be
declared, including IO actions. Therefore, it is trivial to determine if
parallel execution is safe.

However, working out how to optimally parallelize a program is much more
difficult.

Programmers rarely understand the performance of their programs.

They find it difficult to account for the overheads of parallelization,
such as the costs of spawning a task and sharing data.

Parallelism in one part of the program can affect how many
processors are available for another part of the program.

If the program changes in the future, the programmer may have to
re-parallelise it.

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 2 / 29



Automatic Parallelism in Mercury Introduction

About Mercury

Mercury is a pure logic/functional language designed to support the
creation of large, reliable, efficient programs.

It has a syntax similar to Prolog’s, however the operational semantics
are very different.

It is strongly typed using a Hindley Milner type system.

It also has mode and determinism systems.

:- pred map(pred(T, U), list(T), list(U)).

:- mode map(pred(in, out) is det, in, out) is det.

map(_, [], []).

map(P, [X | Xs], [Y, Ys]) :-

P(X, Y),

map(P, Xs, Ys).

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 3 / 29



Automatic Parallelism in Mercury Introduction

Data dependencies

qsort([], []).

qsort([Pivot | Tail], Sorted) :-

partition(Pivot, Tail, Bigs0, Smalls0), %1

qsort(Bigs0, Bigs), %2

qsort(Smalls0, Smalls), %3

Sorted = Smalls ++ [Pivot | Bigs]. %4
1

2 3

4

Bigs0 Smalls0

Bigs Smalls

Steps 2 and 3 are independent.

This is easy to prove because
there are never any side effects.

They may be executed in
parallel.

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 4 / 29



Automatic Parallelism in Mercury Introduction

Explicit Parallelism

Mercury allows explicit, deterministic parallelism via the parallel
conjunction operator &.

qsort([], []).

qsort([Pivot | Tail], Sorted) :-

partition(Pivot, Tail, Bigs0, Smalls0),

(

qsort(Bigs0, Bigs)

&

qsort(Smalls0, Smalls)

),

Sorted = Smalls ++ [Pivot | Bigs].

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 5 / 29



Automatic Parallelism in Mercury Introduction

Why make this automatic?

We might expect parallelism to yield a speedup in the quicksort example,
but it does not.

The above parallelization creates N parallel tasks for a list of length N.
Most of these tasks are trivial and therefore the overheads of managing
them slow the program down.

Programmers rarely understand the performance of their programs, even
when they think they do. It is best if the compiler optimizes the program
on behalf of the programmer.

The same is true for parallelization — which is just another optimization.

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 6 / 29



Automatic Parallelism in Mercury General approach

Our approach

Profile the program to find the expensive parts.

Analyse the program to determine what parts can be run in parallel.

Select only the parts that can be parallelized profitably. This may
involve trial and error when done by hand.

Continue introducing parallel evaluation until the all processors are
fully utilised or there is no profitable parallelism left.

source compile profile analyse feedback

compile result

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 7 / 29



Automatic Parallelism in Mercury General approach

Finding parallelization candidates

The deep profiler’s call graph is a tree of strongly connected components
(SCCs). Each SCC is a group of mutually recursive calls. The automatic
parallelism analysis follows the following algorithm:

Recurse depth-first down the call graph from main/2.

Analyze each procedure of each SCC, identify conjunctions that have
two or more goals whose cost is greater than a configurable threshold.

Stop recursing into children if either:

the child’s cost is below another configurable threshold; or
there is no free processor to exploit any parallelism the child may have.

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 8 / 29



Automatic Parallelism in Mercury Overlap analysis

How would you parallelize this?

map_foldl(_, _, [], Acc, Acc).

map_foldl(M, F, [X | Xs], Acc0, Acc) :-

M(X, Y),

F(Y, Acc0, Acc1),

map_foldl(M, F, Xs, Acc1, Acc).

During parallel execution, a task will block if a variable it needs is not
available when it needs it.

F needs Y from M, and the recursive call needs Acc1 from F.

Can map foldl be profitably parallelized despite these dependencies, and
if yes, how?

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 9 / 29



Automatic Parallelism in Mercury Overlap analysis

Parallelizing map foldl

Y is produced at the very end of M and consumed at the very start of F, so
the execution of these two calls cannot overlap.

Acc1 is produced at the end of F, but it is not consumed at the start of
the recursive call, so some overlap is possible.

map_foldl(_, _, [], Acc, Acc).

map_foldl(M, F, [X | Xs], Acc0, Acc) :-

(

M(X, Y),

F(Y, Acc0, Acc1)

) &

map_foldl(M, F, Xs, Acc1, Acc).

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 10 / 29



Automatic Parallelism in Mercury Overlap analysis

map foldl overlap

The recursive call needs Acc1 only when it calls F. The calls to M can be
executed in parallel.

M F

Acc1

M F

Acc1’Acc1

M F

Acc1’

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 11 / 29



Automatic Parallelism in Mercury Overlap analysis

Simple overlap example

Tasks p and q have one shared variable.

We conceptually split each task split into sections, each section ended by
the production or consumption of a shared variable.

pR and qR denote the time that the tasks take to compute any
non-shared variables needed after the conjunction.p pA + pR qA + qR q

A

pA pR

A

qA qR

q qA qR

A

qA qR

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 12 / 29



Automatic Parallelism in Mercury Overlap analysis

Overlap with more than one dependency

We calculate the execution time of q by iterating over its sections. In this
case, that means iterating over the variables it consumes in the order that
it consumes them.p pC + pB + pR qB + qC + qR q

BC

pC pB pR

B C

qB qC qR

q qB qC + qR

B C

qB qC qR

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 13 / 29



Automatic Parallelism in Mercury Overlap analysis

Overlap of more than two tasks

A task that consumes a variable can occur only on the right of the task
that generates its value. Therefore, we process conjuncts from left to right.
p pA + pR

A

pA pR

q qA qB + qR

A

qA qB qR

B

r rB rR

B

rB rR

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 14 / 29



Automatic Parallelism in Mercury Overlap analysis

Overlap algorithm — Loop over conjuncts

find_par_time(Conjs, SeqTimes) returns TotalParTime:

N := length(Conjs)

ProdTimeMap := empty

TotalParTime := 0

for i in 1 to N:

CurParTime := 0 + ...

find_conjunct_par_time(Conjs[i], SeqTimes[i],

CurParTime, ProdTimeMap)

TotalParTime := max(TotalParTime, CurParTime)

TotalParTime := TotalParTime + ...

The ...s represent estimates of overheads.

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 15 / 29



Automatic Parallelism in Mercury Overlap analysis

Overlap algorithm — Loop over variables

find_conjunct_par_time(Conj, SeqTime,

inout CurParTime, inout ProdTimeMap):

ProdConsList := get_sorted_var_uses(Conj)

CurSeqTime := 0

forall (Var_j, Time_j) in ProdConsList:

Duration_j := Time_j - CurSeqTime

CurSeqTime := CurSeqTime + Duration_j

if Conj produces Var_j:

CurParTime := CurParTime + Duration_j + ...

ProdTimeMap[Var_j] := CurParTime

else Conj must consume Var_j:

ParWantTime := CurParTime + Duration_j + ...

CurParTime := max(ParWantTime, ProdTimeMap[Var_j]) + ...

DurationRest := SeqTime - CurSeqTime

CurParTime := CurParTime + DurationRest

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 16 / 29



Automatic Parallelism in Mercury Overlap analysis

Results on some small programs

Program Seq 1 CPU 2 CPUs 3 CPUs 4 CPUs

matrixmult 11.0 14.6 (0.75) 7.5 (1.47) 6.2 (1.83) 5.2 (2.12)

raytracer 22.7 25.1 (0.90) 16.0 (1.42) 11.2 (2.03) 9.4 (2.42)

mandelbrot 33.4 35.6 (0.94) 17.9 (1.87) 12.1 (2.76) 9.1 (3.67)

Parallel code needs to use a machine register to point to thread-specific
data, so enabling parallel execution but not using it leads to slowdowns.

Matrixmult has one memory store for each FP multiply/add pair. Its
speedup is limited by memory bus bandwidth, which it saturates relatively
quickly.

Raytracer generates many intermediate data structures. The GC system
consumes 40% of the execution time in stop-the-world collections when
using 4 Mercury threads and 4 GC threads. When using 1 Mercury thread
and 4 GC threads it uses only 5% of the program’s runtime.

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 17 / 29



Automatic Parallelism in Mercury Overlap analysis

Results on the Mercury compiler

There are 53 conjunctions in the compiler with two or more expensive
conjuncts.

52 of these are dependent conjunctions.

31 of these have a predicted speedup of greater than 1% (the default
speedup threshold).

Therefore, our analysis can prevent the parallelization of 22
conjunctions that are not profitable.

Unfortunately, many parts of the compiler must be executed sequentially.
Due to Amdahl’s law, this limits the overall speedup of the compiler.

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 18 / 29



Automatic Parallelism in Mercury Conclusion

Progress to date

Our analysis is able to find profitable parallelism in small programs
and generate advice for the compiler.

The analysis explores only the parts of the call graph that might be
profitably parallelized.

Our novel overlap analysis allows us to estimate how dependencies
affect parallel execution.

The compiler can act on this advice, and can profitably parallelize
small programs.

Not shown in this presentation:

We can rearrange some computations to make it easier to take
advantage of parallelism.

We can efficiently search a large space of possible parallelizations.

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 19 / 29



Automatic Parallelism in Mercury Conclusion

Further work

Account for barriers to effective parallelism, including garbage
collection and memory bandwidth limits.

Build an advice system that informs programmers why something
they think can be profitably parallelized in fact cannot be.

Support parallelization as a specialization.

Questions?

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 20 / 29



Automatic Parallelism in Mercury Choosing how to parallelize

Choosing how to parallelize

g1, g2, g3

g1 & (g2, g3)

(g1, g2) & g3

g1 & g2 & g3

Each of these is a parallel conjunction of sequential conjunctions, with
some of the conjunctions having only one conjunct.

If there is a g4, you can (a) execute it in parallel with all the other parallel
conjuncts, or (b) execute it in sequence with the goals in the last
sequential conjunction.

There are thus 2N−1 ways to parallelize a conjunction of N goals.

If you allow goals to be reordered, the search space would become larger
still.

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 21 / 29



Automatic Parallelism in Mercury Choosing how to parallelize

Even simple code can have many conjuncts.

X = (-B + sqrt(pow(B, 2) - 4*A*C)) / 2 * A

Flattening the above expression gives 12 small goals, each executing one
primitive operation:

V1 = 0 V5 = 4 V9 = sqrt(V8)

V2 = V1 - B V6 = V5 * A V10 = V2 + V9

V3 = 2 V7 = V6 * C V11 = V3 * A

V4 = pow(B, V3) V8 = V4 - V7 X = V9 / V11

Primitive goals are not worth spawning off. Nonetheless, they can appear
between goals that should be parallelized against one another, greatly
increasing the value of N.

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 22 / 29



Automatic Parallelism in Mercury Choosing how to parallelize

Reducing the search space.

Currently we do two things to reduce the size of the search space from
2N−1:

Remove whole subtrees of the search tree that are worse than the
current best solution (a variant of “branch and bound”).

During search we always follow the most promising-looking branch
before backtracking to the alternative branch.

If the search is still taking to long, then switch to a greedy search
that is approximately linear.

This allows us to fully explore the search space when it is small, while
saving time by exploring only part of the search space when it is large.

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 23 / 29



Automatic Parallelism in Mercury Push-into-goal transformation

Expensive goals in different conjunctions

The call to typecheck and the call to typecheck preds are expensive
enough to be worth parallelizing. But the if-then-else that contains the call
to typecheck has a typical cost 1/10th of the cost of typecheck. It is
not worth parallelizing the if-then-else against typecheck preds.

typecheck_preds([], [], ...).

typecheck_preds([Pred0 | Preds0], [Pred | Preds], ...) :-

( if should_typecheck(Pred0) then

10 typecheck(Pred0, Pred, ...)

else

90 Pred = Pred0

),

100 typecheck_preds(Preds0, Preds, ...).

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 24 / 29



Automatic Parallelism in Mercury Push-into-goal transformation

Push later goals into earlier compound goals

We can push the call to typecheck preds into the if-then-else and
parallelize only the then-part:

typecheck_preds([], [], ...).

typecheck_preds([Pred0 | Preds0], [Pred | Preds], ...) :-

( if should_typecheck(Pred0) then

typecheck(Pred0, Pred, ...) &

typecheck_preds(Preds0, Preds, ...)

else

Pred = Pred0,

typecheck_preds(Preds0, Preds, ...)

).

Our analysis can perform this transformation as part of deciding whether
this parallelization is worthwhile.

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 25 / 29



Automatic Parallelism in Mercury More overlap examples

map foldl overlap

The recursive call needs Acc1 only when it calls F. The calls to M can be
executed in parallel.

M F

Acc1

M F

Acc1’Acc1

M F

Acc1’

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 26 / 29



Automatic Parallelism in Mercury More overlap examples

map foldl overlap

The more expensive M is relative to F, the bigger the overall speedup.

M F

Acc1

M F

Acc1’Acc1

M F

Acc1’

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 27 / 29



Automatic Parallelism in Mercury More overlap examples

Overlap of more than two tasks

A task that consumes a variable can occur only on the right of the task
that generates its value. Therefore, we build the overlap information from
left to right.
p pA + pR

A

pA pR

q qA qB + qR

A

qA qB qR

B

r rB rR

B

rB rR

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 28 / 29



Automatic Parallelism in Mercury More overlap examples

Overlap of more than two tasks

In this example, the rightmost task consumes a variable produced by the
leftmost task.
p pA + pR

A

pA pR

q qA qR

A

qA qR

r rA rR

A

rB rR

Paul Bone et al (The University of Melbourne)Estimating the overlap between dependent computations July 7th, 2011 29 / 29


	Automatic Parallelism in Mercury
	Introduction
	General approach
	Overlap analysis
	Conclusion
	Choosing how to parallelize
	Push-into-goal transformation
	More overlap examples


