
Profiling parallel Mercury programs with ThreadScope

Profiling parallel Mercury programs with
ThreadScope

Paul Bone and Zoltan Somogyi
The University of Melbourne

National ICT Australia

21st Workshop on Logic-based methods in Programming Environments

July 10th, 2011
Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 1 / 20



Profiling parallel Mercury programs with ThreadScope Motivation

Motivation

Parallel programs may suffer from

any performance problems that may also occur in sequential
programs, and

some that are specific to parallel programs.

The second category of problems are hard to identify and diagnose without
tools. The best tools offer visualizations of the program’s behavior.

Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 2 / 20



Profiling parallel Mercury programs with ThreadScope Motivation

Mercury and ThreadScope

People want to understand the performance of their programs for these
reasons:

Users want to tune their explicitly parallel programs.

Language implementors want to tune their run time systems.

Researchers want to verify and improve their auto-parallelization
systems.

Donnie Jones, Simon Marlow and Satnam Singh developed ThreadScope
to help programmers tune parallel Haskell programs when using the
Glasgow Haskell Compiler (GHC).

Mercury’s RTS is similar to GHC’s, making it easy for us to support
ThreadScope simply by having Mercury write out compatible log files.

Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 3 / 20



Profiling parallel Mercury programs with ThreadScope Basic events

Basic events

Mercury implements many of the events that ThreadScope supports with
GHC, as well as some events we added to ThreadScope just for Mercury.

Some of the basic events implemented by both systems include:

Start / Stop the RTS.

Start / Stop garbage collection.

Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 4 / 20



Profiling parallel Mercury programs with ThreadScope Basic events

How much time is spent in the garbage collector?

The ThreadScope viewer indicates a garbage collection with orange. All
collections stop the world and the GC’s own helper threads are used to
perform marking in parallel.

Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 5 / 20



Profiling parallel Mercury programs with ThreadScope Basic events

Garbage collection metrics

We can measure the time between Start GC and Stop GC events, and the
time between the Startup and Shutdown events.

Basic Statistics

Number of engines: 4

Total elapsed time: 100.660s

Runtime startup time: 203.698ms

GC Stats Number: 420

Total: 66.899s

Average: 159.284ms

Stddev: 175.342ms

The program spends roughly 66% of its elapsed time doing garbage
collection!

Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 6 / 20



Profiling parallel Mercury programs with ThreadScope Basic events

Garbage collection metrics

The same program, but with a much larger initial heap size.

Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 7 / 20



Profiling parallel Mercury programs with ThreadScope Basic events

Garbage collection metrics

Basic Statistics

Number of engines: 4

Total elapsed time: 38.515s

Runtime startup time: 10.357ms

GC Stats Number: 46

Total: 10.250s

Average: 222.819ms

Stddev: 229.569ms

The program now spends 85% less time in the garbage collector. Plus it is
2.6x faster! GC now accounts for 26% of the elapsed time.

Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 8 / 20



Profiling parallel Mercury programs with ThreadScope Events for contexts

Events for contexts

Mercury and GHC have a similar threading model.

In Mercury, engines correspond one-to-one with operating system threads.
There are usually as many engines as there are processors.

Contexts represent computations in progress. They include a stack and a
saved copy of abstract machine registers for suspended computations.

We support the following original (Haskell) events for contexts:

Start / Stop context.

Context has become blocked.

Context is yielding (to the garbage collector).

Context has become runnable.

Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 9 / 20



Profiling parallel Mercury programs with ThreadScope Events for contexts

CPU Utilization

This program does not keep engines busy towards the end of its execution.

Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 10 / 20



Profiling parallel Mercury programs with ThreadScope Events for contexts

CPU Utilization

Basic Statistics

Number of engines: 4

Total elapsed time: 6.835s

Runtime startup time: 10.468ms

CPU Utilization

Average CPU Utilization: 3.44

Time running 0 threads: 13.175ms

Time running 1 threads: 1.204s

Time running 2 threads: 37.639ms

Time running 3 threads: 69.104ms

Time running 4 threads: 5.512s

Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 11 / 20



Profiling parallel Mercury programs with ThreadScope Events for contexts

CPU Utilization

The same program has been modified to use finer-grained parallelism.

Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 12 / 20



Profiling parallel Mercury programs with ThreadScope Events for contexts

CPU Utilization

Basic Statistics

Number of engines: 4

Total elapsed time: 5.971s

Runtime startup time: 10.854ms

CPU Utilization

Average CPU Utilization: 3.94

Time running 0 threads: 9.764ms

Time running 1 threads: 39.369ms

Time running 2 threads: 83.149ms

Time running 3 threads: 25.946ms

Time running 4 threads: 5.813s

Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 13 / 20



Profiling parallel Mercury programs with ThreadScope Events for sparks

Events for sparks

Both systems also support sparks — structures that represent parallel
computations that have not yet started to execute, and therefore do not
yet need a stack.

When a spark begins execution, we reuse an existing no-longer-needed
context if we can, otherwise we allocate a new one.

ThreadScope defines two events for sparks:

Run a spark taken from this engine’s spark queue.

Run a spark stolen from another engine’s spark queue.

We have added an event to represent when a spark is created.

We have also added a spark id parameter to each of the pre-defined
events. This will help us track individual sparks, and thus find out which
parallel computations are related.

Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 14 / 20



Profiling parallel Mercury programs with ThreadScope Events for sparks

Metrics about contexts and sparks.

Earlier we measured the number of running contexts over time. We can
also show the following:

The number of runnable contexts plus sparks over time. This tells us
if there is parallelism that could be exploited, and how much. (When
it is too high, our computation may be too finely grained)

The number of blocked contexts over time.

When a context is blocked, how long it is blocked for.

The number of live contexts over time — an indication of how much
stack space is allocated.

The rates that sparks are created and converted — another indication
of granularity. These rates may be high even when the number of
runnable contexts and sparks are low; this happens when work is
created and consumed more synchronously.

Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 15 / 20



Profiling parallel Mercury programs with ThreadScope New events for Mercury

New events for Mercury

Mercury supports the concept of parallel conjunctions and we want to
measure their execution as well.

Start / End parallel conjunction.

Using these events we can determine:

The execution time of a particular instance of a parallel conjunction.

The distribution of execution times for a parallel conjunction.

We have also added an event to mark the end of a parallel conjunct.

We did not need an event for the beginning of a parallel conjunct because
it would be the same as a Run or Steal spark event with the correct spark
id.

We can calculate the execution time and distribution of execution times
for parallel conjuncts.
Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 16 / 20



Profiling parallel Mercury programs with ThreadScope New events for Mercury

Metrics for Conjunctions

These events enable us to determine which parallel conjunct created which
spark; and in turn, which context that spark uses. This allows us to
attribute all the previous metrics to their parallel conjunct and conjunction.

Parallel conjunct → Spark → Context

Therefore a number of metrics can be derived based on sparks and
contexts created for a specific conjunct and conjunction:

Number of running contexts.

Number of runnable contexts plus number of sparks.

Number of blocked contexts.

When a context is blocked, how long it is blocked for.

We can also use many of the metrics shown so far and restrict their input
data to the events occuring only during a particular parallel conjunct or
conjunction.
Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 17 / 20



Profiling parallel Mercury programs with ThreadScope Conclusion

Conclusion

We have achieved the following so far:

The Mercury RTS supports all the applicable basic ThreadScope
events.

All the Mercury-specific events in the paper have been implemented.

Some analyses have been implemented.

The complete and proposed work will make it easy for Mercury
programmers, implementors and researchers to use parallel Mercury.

We will continue with the implementation of our proposal. In the future
we could investigate the following:

Allow the user to access the metrics while exploring the profile in the
GUI.

Gather extra data from the OS and CPUs such as page faults,
cache-miss rates etc.

Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 18 / 20



Profiling parallel Mercury programs with ThreadScope Events for futures

Events for futures

Mercury supports dependent parallel conjunctions by wrapping shared
variables in futures.

Create future.

Wait (Suspend / No-suspend) on future.

Signal future.

Create future events name the variable that is represented by the future.
Create future events occur immediatly before their Start parallel
conjunction event.

We can now measure the following:

How often a particular future blocks a context.

How long, on average, a future blocks a context.

When a future does not block a context, by what margin is blocking
avoided.

Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 19 / 20



Profiling parallel Mercury programs with ThreadScope Events for futures

New events for Mercury’s runtime system.

Implementing the following events allows us to profile Mercury’s RTS, and
therefore tune it.

Looking for a global context to resume.

Trying to run a local spark.

Trying to steal a non-local spark.

Going to sleep.

Each of these events can be paired with another to detect if the operation
is successful and how long it took; except for going to sleep, which is
always successful.

Paul Bone et al (unimelb.edu.au) ThreadScope for Mercury July 10th, 2011 20 / 20


	Profiling parallel Mercury programs with ThreadScope
	Motivation
	Basic events
	Events for contexts
	Events for sparks
	New events for Mercury
	Conclusion
	Events for futures


