
Automatic Parallelisation

Automatic Parallelisation

Paul Bone, Zoltan Somogyi and Peter Schachte
The University of Melbourne

National ICT Australia

Multicore World

March, 2012

Paul Bone et al (The University of Melbourne) Automatic Parallelisation March, 2012 1 / 14



Automatic Parallelisation Introduction

Motivation

Multicore systems are ubiquitous, but parallel programming is hard.

Critical sections are normally protected by locks, but it is easy to make
errors when using locks.

Forgetting to use locks can put the program into an inconsistent
state, currupt memory and crash the program.

Using mulitple locks in different orders, including nested critical
sections can lead to deadlocks.

Misplacing locks can lead to critical sections that are two narrow, or
two wide. Possibly causing poor performance or curruption crashes
(as above).

There are analyses that can be used to safely parallelise programs. For
example, SSA representations can be used to track changes to local
variables and aliasing analysis can track the use of heap variables.

Paul Bone et al (The University of Melbourne) Automatic Parallelisation March, 2012 2 / 14



Automatic Parallelisation Introduction

Optimal Parallelisation

Programmers introduce parallelism in their programs manually. Most other
optimisations are performed automatically by the compiler, (eg: inlining
and register allocation). What if a paralleliser could optimally parallelise a
program the same way that compilers optimally allocate registers?

A paralleliser can analyse and profile a program to accurately measure
performance in different parts of the program.

Programmers find it difficult to estimate the overheads of parallel
execution, this can also be measured accurately by the automatic
paralleliser.

Parallelism in one part of the program can affect how many
processors are available for another part of the program. This can be
tracked easily by the automatic paralleliser.

If the program changes in the future, the paralleliser can easily
re-parallelise it, without modifying the source code.

Paul Bone et al (The University of Melbourne) Automatic Parallelisation March, 2012 3 / 14



Automatic Parallelisation General approach

How?

Profile the program to find the expensive parts.

Analyse the program to determine what parts can be run in parallel.

Select only the parts that can be parallelized profitably. This may
involve trial and error when done by hand.

Continue introducing parallel evaluation until the all processors are
fully utilised or there is no profitable parallelism left.

source compile profile analyse feedback

compile result

Paul Bone et al (The University of Melbourne) Automatic Parallelisation March, 2012 4 / 14



Automatic Parallelisation General approach

Finding parallelization candidates

The program’s call graph is a tree of strongly connected components
(SCCs). Each SCC is a group of mutually recursive calls. The automatic
parallelism analysis follows the following algorithm:

Recurse depth-first down the call graph from main.

Analyze each procedure of each SCC, identify sequential code with
two or more statements or independent expressions whose cost is
greater than a configurable threshold.

Stop recursing into callees if either:

the callee’s cost is below another configurable threshold; or
there is no free processor to exploit any parallelism that the callee may
have.

Paul Bone et al (The University of Melbourne) Automatic Parallelisation March, 2012 5 / 14



Automatic Parallelisation Dependent parallelism

Support for Dependent Parallelism

In our experience less than 2%1 of potential parallelisation sites are
completely independent. Therefore dependent parallelisation must be
supported.

Variables that represent dependencies can be automatically transformed
into futures2 — special variables protected by mutual exclusion. Futures
are passed into parallel tasks and used for communication.

fork LogA = task_a(...);

fork LogAB = task_b(..., LogA);

write_log_file(LogB);

→

LogFutA = create_future();

fork task_a(..., LogFutA);

fork LogAB = task_b(..., LogFutA);

write_log_file(LogB);

1Data from analysis of the Mercury compiler
2Peter Wang and Zoltan Somogyi Minimising the overheads of dependent

AND-parallelism ICLP 2010.
Paul Bone et al (The University of Melbourne) Automatic Parallelisation March, 2012 6 / 14



Automatic Parallelisation Overlap analysis

Overlap analysis

Tasks a and b have one shared variable X. We conceptually split each task
split into sections, each section ended by the production or consumption of
a shared variable.

Sequential

a compute X a b b use X

produce X consume X

Seq Time

Parallel

a compute X a

b b use X

consume X

Par Time

Paul Bone et al (The University of Melbourne) Automatic Parallelisation March, 2012 7 / 14



Automatic Parallelisation Overlap analysis

Coverage Data

We need profiling data to determine the frequency that different branches
are entered so that we can use a weighed average to determine when
variables are produced and consumed in sub-computations.

Count Goal Call Cost

25 void a(.., X) {
25 if (...) {
5 X := ...;

} else {
20 c(...); 20
20 X := ...;

20 d(...); 80
25 }
25 }

Paul Bone et al (The University of Melbourne) Automatic Parallelisation March, 2012 8 / 14



Automatic Parallelisation Overlap analysis

Results

mandelbrot raytracer spectral
seq 19.37 (0.97) 19.50 (1.21) 16.07 (1.19)

t-safe seq 18.75 (1.00) 23.55 (1.00) 19.07 (1.00)
t-safe p1 18.74 (1.00) 23.54 (1.00) 19.30 (0.99)
t-safe p2 9.69 (1.94) 14.14 (1.67) 9.96 (1.91)
t-safe p3 6.29 (2.98) 10.72 (2.20) 6.62 (2.88)
t-safe p4 4.74 (3.96) 9.35 (2.52) 4.98 (3.83)

Paul Bone, Zoltan Somogyi and Peter Schachte Controlling Loops in

Parallel Mercury Code, Declarative Aspects and Applications of Multicore
Programming, Janurary 2012, Philadelphia PA, USA.

Paul Bone et al (The University of Melbourne) Automatic Parallelisation March, 2012 9 / 14



Automatic Parallelisation More profiling

ThreadScope

ThreadScope3 is a visual event-based profiler for parallel programs.

Some events include:

Program starting/stopping, and the number of worker threads to use.

Start / Stop garbage collection.

Start / Stop thread.

Thread has become blocked.

Thread is yielding (to the garbage collector).

Thread has become runnable.

3Don Jones Jr., Simon Marlow and Satnam Singh: Parallel Performance Tuning for

Haskell, ACM SIGPLAN 2009 Haskell Symposium
Paul Bone et al (The University of Melbourne) Automatic Parallelisation March, 2012 10 / 14



Automatic Parallelisation More profiling

ThreadScope screenshot — Garbage collection

Profile of ICFP2000 raytracer benchmark.

Paul Bone et al (The University of Melbourne) Automatic Parallelisation March, 2012 11 / 14



Automatic Parallelisation More profiling

ThreadScope screenshot — CPU utilization

Profile of naive parallel fibonacci calculation (synthetic).

ThreadScope gives uses a strong intuition into how their programs
perform.

Paul Bone et al (The University of Melbourne) Automatic Parallelisation March, 2012 12 / 14



Automatic Parallelisation More profiling

CPU utilization

Basic Statistics

Number of engines: 4

Total elapsed time: 6.835s

Runtime startup time: 10.468ms

CPU Utilization

Average CPU Utilization: 3.44

Time running 0 threads: 13.175ms

Time running 1 threads: 1.204s

Time running 2 threads: 37.639ms

Time running 3 threads: 69.104ms

Time running 4 threads: 5.512s

We intend to feed the data it captures back into our auto-parallelisation
system.

Paul Bone et al (The University of Melbourne) Automatic Parallelisation March, 2012 13 / 14



Automatic Parallelisation Conclusions

Conclusions

We have described the major parts of a working automatic
parallelisation system.

The profiler is the most important component, it provides the data
needed by the analysis.

An advice system for programmers can be built with only a profiler
and an analysis tool.

The algorithms are not specific to any programming language,
although declarative langauges make some things easier.

The best place to start such a project is with the profiler.

We have implemented our system for the open-source Mercury
programming langauge.

mercurylang.org

Paul Bone et al (The University of Melbourne) Automatic Parallelisation March, 2012 14 / 14

mercurylang.org

	Automatic Parallelisation
	Introduction
	General approach
	Dependent parallelism
	Overlap analysis
	More profiling
	Conclusions


