
Automatic Parallelisation for

Mercury

Paul Bone

Submitted in total fulfilment of the requirements of the degree of
Doctor of Philosophy

December 2012

Department of Computing and Information Systems
The University of Melbourne





Abstract

Multicore computing is ubiquitous, so programmers need to write parallel programs to take advan-

tage of the full power of modern computer systems. However the most popular parallel program-

ming methods are difficult and extremely error-prone. Most such errors are intermittent, which

means they may be unnoticed until after a product has been shipped; they are also often very dif-

ficult to fix. This problem has been addressed by pure declarative languages that support explicit

parallelism. However, this does nothing about another problem: it is often difficult for developers

to find tasks that are worth parallelising. When they can be found, it is often too easy to create

too much parallelism, such that the overheads of parallel execution overwhelm the benefits gained

from the parallelism. Also, when parallel tasks depend on other parallel tasks, the dependencies

may restrict the amount of parallelism available. This makes it even harder for programmers to

estimate the benefit of parallel execution.

In this dissertation we describe our profile feedback directed automatic parallelisation system,

which aims at solving this problem. We implemented this system for Mercury, a pure declarative

logic programming language. We use information gathered from a profile collected from a sequential

execution of a program to inform the compiler about how that program can be parallelised. Ours

is, as far as we know, the first automatic parallelisation system that can estimate the parallelism

available among any number of parallel tasks with any number of (non-cyclic) dependencies. This

novel estimation algorithm is supplemented by an efficient exploration of the program’s call graph,

an analysis that calculates the cost of recursive calls (as this is not provided by the profiler), and

an efficient search for the best parallelisation of N computations from among the 2N−1 candidates.

We found that in some cases where our system parallelised a loop, spawning off virtually all

of its iterations, the resulting programs exhibited excessive memory usage and poor performance.

We therefore designed and implemented a novel program transformation that fixes this problem.

Our transformation allows programs to gain large improvements in performance and in several

cases, almost perfect linear speedups. The transformation also allows recursive calls within the

parallelised code to take advantage of tail recursion.

Also presented in this dissertation are many changes that improve the performance of Mercury’s

parallel runtime system, as well as a proposal and partial implementation of a visualisation tool

that assists developers with parallelising their programs, and helps researchers develop automatic

parallelisation tools and improve the performance of the runtime system.

Overall, we have attacked and solved a number of issues that are critical to making automatic

parallelism a realistic option for developers.
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Preface

The dissertation begins with an introduction (Chapter 1) that motivates the need for automatic

parallelism systems. It provides an analysis of the related literature; using this to show why

automatic parallelism is important and why the problem is still unsolved.

Chapter 2 provides background material used throughout the rest of the dissertation. In partic-

ular it describes prior work that I did as part of my Honours project for the degree of Bachelor of

Computer Science Honours at the University of Melbourne. This work occurred before my Ph.D.

candidature commenced. This work included: the profiler feedback framework (Section 2.4), an

initial rudimentary version of the automatic parallelisation tool (also Section 2.4), an algorithm for

determining when a sub-computation first uses a variable (Section 2.4.4), and the initial version of

the coverage profiling support in Mercury’s deep profiler (Section 2.4.3).

Chapter 3 discusses a number of improvements that were made to the runtime system, in order

to make parallel Mercury programs perform better. Chapter 3 describes some joint work with

Peter Wang. Wang contributed about 80% of the initial work stealing implementation described

in Section 3.4; I contributed the other 20%. An improved version of work stealing is described in

Section 3.6, but the work in that section is solely my own.

The next three chapters are based on published papers, of which I am the first author and

contributed the vast majority of the work. Chapter 4 describes our new automatic parallelism

analysis tool and its novel algorithms. It is based on the following journal article.

Paul Bone, Zoltan Somogyi and Peter Schachte. Estimating the overlap between de-

pendent computations for automatic parallelization. Theory and Practice of Logic Pro-

gramming, 11(4–5):575–591, 2011.

Chapter 5 describes a code transformation that fixes a long standing performance problem in

the parallel execution of most recursive code. It is based on the following conference paper.

Paul Bone, Zoltan Somogyi and Peter Schachte. Controlling Loops in Parallel Mercury

Code. Proceedings of the 7th Workshop on Declarative Aspects and Applications of

Multicore Programming, Philadelphia PA USA, January 2012.

Chapter 6 describes our use of the ThreadScope visual profiler that was developed for use with

Haskell and how we use it with Mercury. It is based on the following workshop paper.

Paul Bone and Zoltan Somogyi. Profiling parallel Mercury programs with Thread-

Scope. Proceedings of the 21st Workshop on Logic-based methods in Programming

Environments, Lexington KY USA, July 2011.

Finally Chapter 7 concludes the dissertation, providing a discussion that unifies the work pre-

sented in the four main chapters and describes potential further work.
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Chapter 1

Introduction

In 1965 Moore [86] predicted that the transistor density on processors would grow exponentially

with time, and the manufacturing cost would fall. The smaller transistors are, the faster they

can switch (given adequate power), and therefore manufacturers can ship faster processors. The

industry celebrated this trend, calling it Moore’s Law. However as faster processors require more

power, they create more heat which must be dissipated. Without novel power saving techniques

(such as Bohr et al. [16]), this limits increases of processors’ clock speeds.

Around 2005 it became clear that significant improvements in performance would not come from

increased clock speeds but from multicore parallelism [103]. Manufacturers now build processors

with multiple processing cores, which can be placed in the same package, and usually on the same

die. Individual cores work separately, communicating through the memory hierarchy.

Other methods of improving performance without increasing clock speed have also been tried.

• Modern processors perform super-scalar execution: processor instructions form a pipeline,

with several instructions at different stages of execution at once, and by adding extra circuitry,

several instructions may be at the same stage of execution. However, we have just about

reached the limits of what super-scalar execution can offer.

• Manufacturers have also added Single Instruction Multiple Data (SIMD) instructions to their

processors; this allows programmers to perform the same operation on multiple pieces of data.

In practice however, SIMD is useful only in some specific circumstances.

• Multicore computing has the potential to be useful in many circumstances, and does not

appear to have limitations that cannot be overcome. Cache coherency could be a limitation

for processors with many cores. However there are solutions to this such as directory based

memory coherency; there are also research opportunities such as making compilers responsible

for cache management.

Multicore computing is a special case of multiprocessing. Most multiprocessing systems are

symmetric multiprocessing (SMP) systems. An SMP system consists of several homogeneous pro-

cessors and some memory connected together. Usually all processors are equally-distant from all

memory location. Most multicore systems are SMP systems; they may have more than one CPU

each with any number of cores. Some multiprocessing systems use a non-uniform memory archi-

tecture (NUMA). Usually this means that each processor has fast access to some local memory and

1



2 CHAPTER 1. INTRODUCTION

slower access to the other processors’ memories. A new type of architecture uses graphics program-

ming units (GPUs) to perform general purpose computing, they are called GPGPU architectures.

However they are not as general purpose as their name suggests: they work well for large regular

data-parallel and compute-intensive workloads, but do not work well for more general symbolic

processing. GPGPUs give programs access to small amounts of different types of memory of fixed

sizes, however most symbolic programs rely on dynamic allocation of unpredictable amounts of

memory. Additionally, symbolic programs often include code with many conditional branches; this

type of code does not perform well on GPGPUs. GPGPU architectures are not as general purpose

as SMP systems and SMP systems are vastly more common than NUMA systems. Therefore, in

this dissertation we are only concerned with SMP systems as they are both more general and more

common, making them more desirable targets for most programmers. Our approach will work with

NUMA systems, but not optimally.

To use a multicore system, or multiprocessing in general, programmers must parallelise their

software. This is normally done by dividing the software into multiple threads of execution which

execute in parallel with one another. This is very difficult in imperative languages as the program-

mer is responsible for coordinating the threads [104]. Few programmers have the skills necessary

to accomplish this, and those that do, still make expensive mistakes as threaded programming

is inherently error prone. Bugs such as data corruption, deadlocks and race conditions can be

extremely tedious to find and fix. These bugs increase the costs of software development. Software

companies who want their software to out-perform their competitors will usually take on the costs

of multicore programming. We will explain the problems with parallelism in imperative languages

in Section 1.1.1.

In contrast to imperative languages, it is trivial to express parallelism in pure declarative

languages. Expressing this parallelism creates two strongly-related problems. First, one must

overcome the costs of parallel execution. For example, it may take hundreds of instructions to

make a task available for execution on another processor. However, if that task only takes a

few instructions to execute, then there is no benefit to executing it in parallel. Even if the task

creates hundreds of instructions to execute, parallel execution is probably not worthwhile. Most

easy-to-exploit parallelism is fine grained such as this. Second, an abundance of coarse grained

parallelism can also be a problem. Whilst the amount of parallelism the machine can exploit cannot

increase beyond the number of processors, the more parallel tasks a program creates, the more

the overheads of parallel execution will have an effect on performance. In these situations, there

is no benefit in parallelising many of the tasks, and yet the overheads of their parallel executions

will still have an effect. This often cripples the performance of such programs. This is known

as an embarrassingly parallel workload. Programs with either of these problems almost always

perform more slowly than their sequential equivalents. Programmers must therefore find the parts

of their program where parallel execution is profitable and parallelise those parts of their program

only, whilst being careful to avoid embarrassing parallelism. This means that a programmer must

have a strong understanding of their program’s computations’ costs, how much parallelism they

are making available, and how many processors may be available at any point in the program’s

execution. Programmers are not good at identifying the hotspots in their programs or in many cases

understanding the costs of computations, consequently programmers are not good at manually

parallelising programs. Programmers are encouraged to use profilers to help them identify the

hotspots in their programs and speed them up; this also applies to parallelisation.



1.1. LITERATURE REVIEW 3

Automatic parallelism aims to make it easy to introduce parallelism. Software companies will

not need to spend as much effort on parallelising their software. Better yet, it will be easier for

programmers to take advantage of the extra cores on newer processors. Furthermore, as a parallel

program is modified its performance characteristics will change, and some changes may affect the

benefit of the parallelism that has already been exploited. In these cases automatic parallelism

will make it easy to re-parallelise the program, saving programmers a lot of time.

1.1 Literature review

In this section we will explore the literature concerning parallel programming.

The languages in which parallelism is used have a strong influence on the semantics and safety

of the parallelism. We group languages into the following two classifications.

Pure declarative programming languages are those that forbid side effects. A side effect is

an action that a computation may perform without a declaration of the possibility of the

action. The effect of executing any computation must be declared in the computation’s

signature. Because all effects are declared, none of them are side effects. This has numerous

benefits, but we will restrict our attention to the specific benefit that this makes it easy

for both compilers and programmers to understand if it is safe to parallelise any particular

computation. Examples of pure declarative languages are Mercury, Haskell and Clean.

Impure programming languages are those that allow side effects. This includes imperative and

impure declarative languages. Determining if parallelisation is safe is usually intractable and

often requires whole program analysis. The analysis is almost always incomplete for programs

whose size makes parallelism desirable. Thus parallelisation of programs written in impure

languages is notoriously difficult. Examples of impure languages are C, Java, Prolog and

Lisp; even though the last two of these are declarative languages, they still allow side effects,

and are therefore impure.

There are many ways to introduce parallelism in computer programming. We find it useful to

create the following categories for these methods.

• Parallelism via concurrency

• Language support for parallelism

• Feedback directed automatic parallelism

We explore the literature in this order as each successive category builds on the work of the previous

category. Our own system is a feedback directed automatic parallelism system; it makes use of

concepts described in all four categories. Therefore we cannot discuss it meaningfully until we have

explored the literature of the giants upon whose shoulders we are standing.

1.1.1 Parallelism via concurrency

It is important to distinguish between parallelism and concurrency.

Concurrency is parallelism in the problem domain.
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As an example consider a web server running on a single core, which is required to handle

multiple requests at once. Concurrency is used by the programmer to help him write the

webserver in a more natural style.

Parallelism is parallelism in the implementation domain.

Consider a program that uses SIMD instructions to multiply matrices, performing several

basic operations with a single instruction. Parallelism is used to reduce the elapsed execution

time of the program.

Concurrency may be implemented using parallelism, because two independent tasks may be

executed at the same time. Languages which have been designed for concurrent programming, and

happen to be implemented using parallelism, can be used by programmers to achieve parallelism.

Because the programmer uses concurrency to achieve parallelism, we call this “parallelism via

concurrency”. Unfortunately, this means that parallelism is both at the top and bottom levels of

the software stack, with concurrency in the middle. The middle layer is superfluous, and should

be avoided if possible. In particular, programmers should not have to shoe-horn their programs

into a concurrent model if that model is not a natural fit for the program. This is particularly bad

because it can make the program difficult to read, understand and debug. When a program can

naturally be expressed using concurrency, then it should probably be written to use concurrency

anyway, regardless of the benefits of parallelism. In this section we will discuss systems that allow

parallelism through concurrency. Our critique of these systems should not be misunderstood as a

critique of concurrency, which is outside the scope of this dissertation.

Concurrency notations such as Hoare’s communicating sequential processes (CSP) [61] or Mil-

ner’s π-calculus [85] provide the programmer with a natural ways to express many programs, such

as webservers. In these cases concurrency is (and should be) used to make the program easier to

write. If concurrency uses parallelism provided by the hardware, many programs will speed up due

to this parallelism, but not all.

The most common method of introducing concurrency is with threads. Some languages, such as

Java [88], support threads natively; others, such as C [65], support it via libraries, such as POSIX

Threads [24] or Windows Threads [33]. These libraries tend to be low level; they simply provide

an interface to the operating system. Different threads of execution run independently, sharing a

heap and static data. Because they share these areas where data may be stored, they can, and

often do, use the same data (unlike CSP). Threads communicate by writing to and reading from

the shared data. Regions of code that do this are called critical sections, and they must protect

the shared data from concurrent access: a thread reading shared data while another writes to it

may read inconsistent data; and when two threads write to the same data, some of the changes

may be lost or corrupted. Synchronisation such as mutual exclusion locks (mutexes) [37] must be

used to manage concurrent access. Upon entering a critical section a thread must acquire one or

more locks associated with the critical section, upon leaving it must release the locks. The use

of locks ensures that only one thread may be in the critical section at a time. (There are other

ways that locks may be used to allow more than one thread inside the critical section, such as

the standard solution to the readers-writers problem.) The programmer is responsible for defining

critical sections and using locks correctly.

Mutual exclusion locking is problematic, because it is too easy to make mistakes when using

locks. One frequent mistake is forgetting to protect access to a critical section, or making the critical

section too small. This can lead to incorrect program behaviour, inconsistent memory states and
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crashes. Making it too large can lead to deadlocks and livelocks. When a critical section uses

multiple shared resources, it is normal to use multiple locks to protect access to a critical section.

The locks must be acquired in the same order in each such critical section, otherwise deadlocks

can occur. This requirement for order prevents critical sections from being nestable, which causes

significant problems for software composability. Failing to acquire locks in the correct order or

failing to avoid nesting can also cause deadlocks. All of these problems are difficult to debug

because their symptoms are intermittent. Often so intermittent that introducing tracing code or

compiling with debugging support can prevent the problem from occurring; these things are known

as heisenbugs and are very frustrating. While it is possible to deal with these problems, we believe

that it is better to design problems out of systems; doing so guarantees that the programmer takes

on fewer risks.

Another popular model of concurrency is message passing. Unlike threads, message passing’s

processes do not share static or heap data; processes communicate by passing messages to one

another. The major benefit of message passing is that it does not make assumptions about where

processes are executing: they can be running all on one machine or spread-out across a network.

Therefore, message passing is very popular for high performance computing, where shared memory

systems are not feasible. Message passing also avoids the problems with threading and mutexes.

However message passing suffers from some of the same problems that threading suffers from. For

example it is possible to create deadlocks with cyclic dependencies between messages: a process a

will send a message to b but only after it has received a message from b, and b will send a message

to a but only after it has received its message. (We can create a similar situation with locks.) Most

deadlocks are more subtle and harder to find than this trivial example.

Notable examples of message passing application programming interfaces (APIs) for C and

Fortran are MPI [82] and PVM [41]. Every process can send messages to and receive messages

from any other process. We can think of this in terms ofmailboxes : each process owns (and can read

from) its own mailbox and can place messages into any mailbox. MPI and (to a lesser extent) PVM

support powerful addressing modes such as multicasting the same message to multiple processes, or

distributing the contents of an array evenly between multiple processes. These features make MPI

and PVM very powerful interfaces for high performance computing. They make the programmer

is responsible for encoding and decoding messages. While this adds extra flexibility, it can also be

very tedious.

Communicating sequential processes [61] is a notation for concurrency using message passing.

Although we introduced PVM and MPI first, CSP predates them by 11 years. Like MPI and

PVM, CSP allows messages to be sent to and from processes using mailboxes. But unlike MPI and

PVM, CSP allows processes to be created dynamically, making it more flexible. The first language

based on CSP was occam [9, 73]. The π-calculus [85] was developed later. It uses channels rather

than mailboxes for communication, although each model is a dual of the other. Unlike CSP, the

π-calculus makes channels first class; they may be sent over a channel to another process. This

allows programmers to compose a dynamic communication network.

The Erlang language [5] supports native message passing, and unlike MPI and PVM, encoding

and decoding is implicit. Erlang is typically used where fault tolerance is important; whereas

MPI and PVM are used for high performance computing. All three systems support distributed

computing.

There are many other languages and libraries based on these process algebras such as Jocaml

[78] (an Ocaml [70–72, 115] derivative) and Go [42]. Go is similar in style to the π-calculus.
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However it also uses shared memory without providing any synchronisation for communicating

through shared memory. In particular data sent in messages may contain pointers, and therefore

different processes may end up referring to the same memory locations. If one process modifies

such a memory location, other processes can see the modification. This creates the possibility that

modifications to this data can cause a process to read inconsistent data or cause updates get lost

or corrupted. This makes several classes of bug possible through accidental use of shared memory.

This is a result of the language specification’s inclusion of pointers and the implementation of

channels.

All the systems we have introduced so far are prone to deadlocks, and many are prone to

other problems. Many problems including deadlocks can be avoided using software transactional

memory (STM) [97]. STM is similar to the threading model, in that it includes the concept of

critical sections. STM does not protect critical sections using mutexes, instead it uses optimistic

locking. Variables that are shared between threads are known as STM variables. They may only

be modified within a critical section and a good implementation will enforce this. STM works

by logging all the reads and writes to STM variables within a critical section, and not actually

performing the writes until the end of the critical section. At that point the STM system acquires

a mutex for each STM variable (in a pre-defined order to avoid deadlocks) and checks for sequential

consistency by comparing its log of the observed values of the variables with the current values

of the variables. If no inconsistencies are found (the variables’ values are all the same), it then

performs any delayed writes and unlocks the variables. Otherwise it must retry the critical section

or fail. This is much safer than the threading model because the user does not need to use mutexes,

and critical sections are now nestable. Code containing nested sections will perform the commit

only when the outermost section is ready to commit. However, programmers must still place their

critical sections correctly in their program. A common criticism of STM is that it performs poorly

when there is a lot of contention as a failed critical section must be re-executed, and this often adds

to the amount of contention. Including side-effecting computations inside an STM critical section

can also be a problem. This can be avoided in a pure declarative language such as Haskell [64] or

Mercury [101]. Harris, Marlow, Peyton-Jones, and Herlihy [54] describes an implementation for

Haskell, and Mika [83] describes an implementation for Mercury.

1.1.2 Language support for parallelism

Parallelism can also be achieved without concurrency. This can be achieved with language an-

notations that do not affect the (declarative) semantics of the program. The annotations usually

describe what should be parallelised, and rarely describe how to parallelise each computation. We

will refer to this as explicit parallelism since parallelism is expressed directly by the programmer

by the explicit annotations. In this section we also discuss implicit parallelism, which covers cases

where programming languages make parallel execution the default method of execution.

OpenMP [35] is a library for C++ and Fortran that allows programmers to annotate parts

of their programs for parallel execution. In OpenMP most parallelism is achieved by annotating

loops. C++ is an imperative language and therefore the compiler generally cannot determine

which computations are safe to parallelise. The programmer is responsible for guaranteeing that

the iterations of the loops are independent, in other words, that no iteration depends on the

results of any previous iterations. If an iteration makes a function call, then this guarantee must

also be true for the callee and all transitive callees. The programmer must also declare the roles of
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variables, such as if they are shared between iterations or local to an iteration. This is necessary so

that the compiled code is parallelised correctly. The programmer may specify how the iterations

of the loop may be combined into parallel tasks (known as chunking). This means that to some

extent the programmer still describes how to parallelise the loop, although the programmer has

much less control than with parallelism via concurrency systems. Provided that the programmer

can annotate their loops correctly, explicit parallelism with OpenMP avoids the problems with

threading and message passing.

In pure declarative languages a function has no side effects: all possible effects of calling a

function are specified in its declaration. This is often done by expressing effects as part of the

type system; Haskell [64] uses Monads [69], Mercury1 [101] and Clean [21] use uniqueness-typing,

and Disciple [74] which uses effect-typing. In any of these systems both the programmer and

compiler can trivially determine if executing a particular computation in parallel is safe. In Haskell,

Mercury and Clean (but not Disciple) the concept of a variable is different from that in imperative

programming, it is not a storage location that can be updated, but a binding of a name to a value.

Therefore variables that are shared (those that we would have to declare as shared in OpenMP)

are really shared immutable values. Explicit parallelism in declarative languages is much easier

and safer to use than in imperative languages. The next two sub-sections describe parallelism in

functional and logic languages respectively.

Parallelism in functional languages

Pure functional languages like Haskell and Clean can be evaluated using a process known as graph

reduction. Graph reduction works by starting with an expression and a program and applying

reductions to the expression using the program. Each reduction uses an equation in the program

to replace part of the expression with an equivalent expression. In a lazy language (or lazy im-

plementation of a non-strict language) each reduction step performs outermost reduction. This

means that the arguments of a function are not normally evaluated before a reduction replaces the

function call with the right hand side of equation for that function. Some reductions require the

evaluation of an argument, these include primitive operations and pattern matching. The system

continues applying reductions until outermost symbol is a value. The resulting value may have

parameters which are still expressions; they have not been evaluated. This is called weak head

normal form (WHNF). Graph reduction itself can be parallelised. If a subgraph (an argument in

the expression) is known to be required in the future, then it can be evaluated in parallel using the

same graph reduction process. Several projects have experimented with this technique [7, 22, 89].

Because the programmer does not need to annotate their program this parallelism is implicit.

While implicit parallelism is always safe2 there is a serious performance issue. The cost of spawn-

ing off a parallel evaluation is significant, and so is the cost of communication between parallel

tasks. There are also distributed costs throughout the execution of these systems: for example

many parallel graph reduction systems introduce locking on every graph node. Such locking in-

creases the overheads of evaluation even when no parallel tasks are created. Therefore parallelised

computations should be large enough that the benefit of evaluating them in parallel outweighs

the costs of doing so. Unfortunately most parallelism in an implicit parallel system is very fine

1Mercury’s uniqueness typing is part of its mode system. Despite this, it is still considered uniqueness typing.
2There are some systems that use explicit parallelism and allow side-effects such as Prolog implementations with

extra-logical predicates and Multilisp with destructive update. Nevertheless the intention is that implicit parallelism
should always be safe
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grained, meaning that it is not large enough to make parallel evaluation worthwhile. There is

also a lot of this parallelism. This means that the system spends most of its time managing the

parallel tasks rather than evaluating the program. This is called embarrassing parallelism as the

amount of fine-grained parallelism can cause the evaluation to perform more slowly than sequential

evaluation. Most other implicitly parallel systems share these problems. Many systems such as

Peyton-Jones et al. [89] go to lengths to exploit only coarse grained parallelism. In our opinion

the problem with implicit parallelism is that it approaches the parallel programming challenge

from the wrong direction: it makes everything execute in parallel by default and then attempts

to introduce sequential execution; rather than make sequential execution the default and then

attempt to introduce parallel execution only where it is profitable. The former creates thousands

if not millions of parallel tasks, whereas the latter creates far fewer, dozens or hundreds. Since

most systems have only a handful of processors the latter situation is far more manageable having

far fewer overheads; therefore we believe that it is the correct approach. In contrast to implicit

parallelism, explicit parallelism allows the programmer to introduce parallelism only where they

believe it would be profitable. This means that the default execution strategy is sequential, and

far fewer parallel tasks are created.

Multilisp [49, 50] is an explicitly parallel implementation of Scheme. Like Scheme, Multilisp

is not pure: it allows side effects. This means that as programmers introduce parallelism, they

must be sure that parallel computations cannot be affected by side effects, and do not have side

effects themselves. Therefore Multilisp is not safe as side effects may cause inconsistent results

or corrupt memory. Multilisp programmers create parallelism by creating delayed computations

called futures. These computations will be evaluated concurrently (and potentially in parallel).

When the value of a future is required, the thread blocks until the future’s value is available.

Operations such as assignment and parameter parsing do not require the value of a future.

Haskell is a pure functional language. Being pure it does not have the problem with side effects

that Multilisp does. The Haskell language standard specifies that it is non-strict3; in practice,

all implementations use lazy evaluation most of the time. A subexpression may be evaluated

eagerly if it is always required in a particular context. Haskell programmers can introduce explicit

parallelism into their programs with two functions (par and pseq). Trinder et al. [107] first added

these functions to GUM (A parallel Haskell implementation). Then Harris et al. [53] added them

to the Glasgow Haskell Compiler (GHC). The par and pseq functions have the types:

par :: a -> b -> b

pseq :: a -> b -> b

They both take two arguments and return their second. Their declarative semantics are identical;

however their operational semantics are different. The par function may spawn off a parallel task

that evaluates its first argument to WHNF, and returns its second argument. The pseq function

will evaluate its first argument to WHNF and then return its second argument. We can think of

these functions as the const function with different evaluation strategies.

Unfortunately lazy evaluation interacts poorly with parallel evaluation. Because parallel tasks

are only evaluated to WHNF, most tasks do not create enough work to make parallelisation worth-

while. Trinder et al. [108] tried to reduce this problem by allowing programmers to specify an

evaluation strategy, which describes how deeply to evaluate expressions. This description is writ-

ten in Haskell itself, This support is implemented as a library and it can describe higher order

3Non-strict evaluation is more broadly defined than lazy evaluation
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evaluation strategies. This does not solve the problem, it only gives the programmer a way to deal

with it when they encounter it. It would be better to make it impossible for the problem to occur.

An alternative Haskell library called Monad.Par [80] requires parallel computations to be eval-

uated in full. However the programmer must provide typeclass instances for each of their own

types that describe how to completely evaluate that type. While this still requires a non-trivial

amount of effort from the programmer; it makes it harder for the programmer to make mistakes,

since their program will not compile if they forget to provide a typeclass instance.

Regardless of how we manage lazyness in parallelism we expose, it still introduces a runtime

cost. Every variable must be tested to determine if it is a thunk or a value, and while this cost

occurs in sequential programs, it can be higher in parallel programs. Furthermore, this means that

it is not always clear (even when one does use pseq, strategies or Monad.Par) which threads will

perform which computations.

Parallelism in logic languages

Different logic programming languages use different evaluation strategies, but we will restrict our

attention to those that use selective linear resolution with definite clauses (SLD resolution) [67].

SLD resolution attempts to answer a query by finding a Horn clause whose head has the same

predicate name as the selected atom in the query, performing variable substitution and then per-

forming a query on each conjunct in the clause’s body. If a query of a conjunct fails then the clause

fails and an alternative clause may be tried. Multiple clauses may succeed meaning that there are

several solutions, and if no clauses succeed it means that there are zero solutions.

Prolog is the best known logic programming language based on SLD resolution. OR-parallel

Prolog implementations may attempt to resolve a query against multiple clauses in parallel. In most

logic programs that we have seen have very little OR-parallelism. In cases where there is abundant

OR-parallelism, it is usually because the program uses a significant amount of non-deterministic

search. Large search problems can be implemented more efficiently in constraint programming

languages, even sequential ones. Additionally OR-parallelism is speculative: the current goal may

be executed in a context where only the first result will be used, therefore searching for more results

in parallel may be a waste of resources. Systems that attempt to exploit OR-parallelism include

Aurora [77], Muse [3] and ACE [45]. (ACE also supports AND-parallelism.)

AND-parallel Prolog implementations introduce parallelism by executing conjuncts within

clauses in parallel. AND-parallelism comes in two varieties, independent and dependent. Indepen-

dent AND-parallelism is much simpler, it only parallelises goals whose executions are independent.

There are various ways to prove the independence of goals with varying degrees of completeness.

If we cannot prove that a group of goals is independent, then we must assume the goals are de-

pendent. The simplest and weakest way to prove independence is to show that the goals have no

variables in common, including aliased variables (free variables unified with one another). This can

be done statically. However very few groups of goals are trivially independent. We can improve

this by allowing the sharing of ground variables. Systems allowing this initially used runtime tests

to check the groundness and independence of variables. These tests may traverse arbitrarily large

data structures. The overheads of executing these checks (which must be executed regardless of

their outcome) can outweigh the benefit of parallel execution. Some systems used compile time

analysis to reduce the costs of the runtime checks. Despite this the remaining runtime tests’ costs

were still unbounded. More advanced systems such as Hermenegildo and Greene [58], Gras
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and Hermenegildo [44] and Hermenegildo and Rossi [59] perform more complicated compile time

analyses. Some of these analyses require whole program analysis for completeness, making them

impractical for large programs. Furthermore, the Prolog language allows some operations that can

prevent an analysis from being complete even if whole program information is available.

Prolog supports logic variables. When two or more free variables are unified with one another

they behave as one variable; any later successful unification on any of the variables implicitly

modifies the state of the other variables. During sequential execution part of the search space may

bind variables to values. If this branch of the search fails, execution must backtrack and retract

any bindings that were made on the failed branch. This is required so that alternative branches of

the search tree are free to bind the variables to other values. With OR-parallelism a variable may

be bound to distinct values in different parts of the search tree at once. There are many different

ways to implement this, for example Muse stores variables for different parallel parts of the search

tree in different address spaces. While this is simple to implement it performs poorly: extra work

is required to copy the states of computations as new computations are executed in parallel. It is

difficult to implement systems that perform well.

Also, in independent AND-parallel systems variable bindings are easy to manage correctly,

but difficult to manage efficiently. Systems that combine independent AND-parallelism and OR-

parallelism, such as PEPSys [8] and ACE [45], combine the costs of managing variables in either

parallelism type.

Unfortunately, just as most programs do not contain much OR-parallelism, very few programs

contain much independent AND-parallelism. For example, in the Mercury compiler itself, there

are 69 conjunctions containing two or more expensive goals, but in only three of those conjunc-

tions are the expensive goals independent (Section 4.1), Supporting dependent AND-parallelism

in Prolog is much more difficult because of the management of variable bindings. Any conjunct in

a dependent AND-parallel conjunction may produce bindings for any given variable. If different

conjuncts produce different values for the same variable, then one of them must fail. Handling

this correctly and efficiently is extremely difficult. In a system such as Ciao [57], which attempts

to infer modes for predicates (but allows them to be specified), the producer of a variable may be

known, greatly simplifying the management of that variable’s bindings. The next problem is how

variable communication can affect other conjuncts running in parallel. Most systems allow parallel

conjuncts to communicate variable bindings as soon as they are produced. This allows conjoined

code running in parallel, in particular non-deterministic search computations, that consume those

bindings to detect failure earlier and therefore execute more efficiently. However if the producer

of a binding is non-deterministic, and it produces the binding within the non-deterministic code,

then a failure may require it to retract variable bindings that are shared in the parallel conjunc-

tion. Implementing this efficiently is difficult. Kernel Andorra Prolog [51] solves this problem

by performing either AND-parallel execution or OR-parallel execution. It attempts to execute

deterministic4 conjoined goals in parallel. For Andorra’s purposes, deterministic means “succeeds

at most once”. If all the goals in the resolvent have more than one matching clause, then it uses

OR-parallelism to execute the matching clauses in parallel. This means that non-determinism

cannot occur in parallel conjunctions.

Another solution to this problem involve restricting the Prolog language by removing backtrack-

ing. This creates committed-choice logic languages such as Concurrent Prolog [96, 106]; Parlog

[29, 30] and Guarded Horn Clauses (GHC) [109]. When these systems encounter multiple clauses

4Andorra uses a different definition for determinism than Mercury does. Section 2.1 explains Mercury’s definition.
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during execution they commit to only one of the clauses. Each of these system uses guarded

clauses, which have the form: H ← G1 ∧ . . . ∧ Gn : B1 ∧ . . . ∧ Bm where Gi and Bi are atoms

in the guard and body of the clause; H is the head of the clause. The evaluation of the body is

committed to if and only if all unifications in the head and the guard are true. Declaratively the

guard and body are conjoined. All three systems have two types of unifications:

ask unifications occur only in one direction: one side of the unification is a term provided by

the environment (the resolvent), the other side is a term in the clause head or guard. An ask

unification may bind variables in the second term but not in the first.

tell unifications allow binding in either direction; they can instantiate the resolvent’s term.

Each system implements these differently: Concurrent Prolog uses a read-only annotation to iden-

tify ask unifications, and GHC uses scoping rules (tell unifications to non-local variables cannot

occur in the head or guard). When an ask unification is used and a ordinary unification in its place

would normally bind a variable, then the computation is suspended until the variable becomes in-

stantiated allowing the ask unification to run without binding the variable. This mechanism ensures

that enough information is available before the program commits to a particular clause. When a

tell unification is used, the binding is made locally and is re-unified as the clause commits. This

re-unification can add to the costs of execution, especially if failure is detected as speculative work

may have been performed in the meantime. Note that in GHC, there cannot be any tell unifications

in the guard and so re-unification is not required. However GHC suspends computations more of-

ten, which also adds to the costs of parallel execution; especially when most unifications can cause

a task to suspend or resume. Newer flat versions of these languages do not allow predicate calls

to be used in a guard [40, 106, 110], this means that unifications in clause bodies can only be tell

unifications. Whilst this reduces the expressiveness of the languages, it allows them to use slightly

simpler unification code in more places. However clause bodies can still include tell unifications

can may provide a variable instantiation that allows some other blocked computation to resume.

Therefore most unifications still incur these extra costs.

Pontelli and Gupta [91] describe a system that supports explicit dependent AND-parallelism

in a non-deterministic language. Analyses determine a conservative set of shared variables in

dependent conjunctions and then guess which conjunct produces each variable (usually the leftmost

one in which the variable appears) and which conjuncts consume it. The consumers of a variable

are suspended if they attempt to bind it and the producer has not yet bound it. The compiler

names apart all the potentially shared variables so that bindings made by the producer can be

distinguished from bindings made by consumers. As these analyses are incomplete (in particular

mode analysis), the predicted producer may not be the actual producer as execution may follow

a different path of execution than the one that was predicted. If this happens then the runtime

system will dynamically change the guess about which conjunct is the producer. This system still

requires plenty of runtime overhead and since it is non-deterministic it must handle backtracking

over code that produces the values of shared variables. The backtracking mechanism used is

described by Shen [98].

Most of the systems we have discussed use implicit parallelism. These are: Aurora, Muse, ACE,

Andorra, Concurrent Prolog, Parlog, GHC and DDAS; while PEPSys uses explicit parallelism

and Ciao can use either. The implicitly parallel systems parallelise almost everything. As we

mentioned earlier this can lead to embarrassing parallelism. Therefore, it is better to create fewer

coarse-grained parallel tasks rather than many fine-grained tasks. To achieve this, some systems
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use granularity control [36] to parallelise only tasks large enough such that their computational

cost makes up for the cost of spawning off the task. While it is easy to either spawn off or not

spawn off a task, it is much more difficult to determine a task’s cost. There are multiple different

ways to estimate the cost of a task. For example King et al. [66] and Lopez et al. [76] construct

cost functions at compile time which can be evaluated at runtime to estimate whether the cost

of a goal is above a threshold for parallel execution given the sizes of certain terms. During

compile time the Lopez et al. paper uses the type, mode and determinism information that the

Ciao [57] compiler makes available. The King et al. paper uses a convex hull approximation to

create its cost functions. This approximation is very useful in this domain, it makes the analysis

of recursive code feasible in modest memory sizes, and not too much information is lost during the

approximation. Shen et al. [99] created a different method for granularity control, which measures

the “distance” between the creation of successive parallel tasks. They propose two methods for

increasing this distance which can create more coarse grained parallelism and usually spawns off

less parallel work (reducing the cost of parallel execution in the program). Their first method

works at compile time by transforming a recursive predicate so that it spawns parallel tasks less

frequently. Their second method works at runtime to achieve the same means, it uses a counter and

will not spawn off parallel work until the counter reaches a predetermined value. Once it reaches

such a value, then the program will spawn off some parallel work and reset the counter. The

counter can be incremented based on some indication of how much work is being done between

tasks, such as abstract machine instructions executed. These methods can help to reduce the

amount of embarrassing parallelism, but the compiler-based method can be difficult to implement

correctly for all programs, and the runtime-based method introduces extra runtime costs. Finding

profitable parallelism is still a difficult problem.

Mercury is a pure logic/functional language, with strong and static type, mode and determinism

systems. We will discuss Mercury in more detail throughout Chapter 2. Conway [31] introduced

explicit independent AND-parallelism to Mercury in deterministic code, code with exactly one

solution (see also Section 2.2). Later Wang [113]; Wang and Somogyi [114] implemented support

for dependent AND-parallelism. Mercury’s mode system allows the compiler to determine the

exact locations of variable bindings. This allowed Wang to implement a transformation that effi-

ciently handles dependent AND-parallelism (see also Section 2.3). Because Mercury only supports

parallelism in deterministic code, variable bindings made by dependent conjuncts can never be

retracted. Some of our critics (reviews of the paper Bone et al. [19] on which Chapter 4 is based)

are concerned that this reduces the amount of parallelism that Mercury is able to exploit too much.

However, roughly 75% of Mercury code is deterministic, and most of the rest is semi-deterministic

(it produces either zero or one solutions). We gathered this determinism information from the

largest open source Mercury program, the Mercury compiler; our experience with other Mercury

programs shows a similar pattern. It may appear that we are missing out on parallelising 25% of

the program, but most of the parallelism in this code is speculative and therefore more difficult

to parallelise effectively. Furthermore, the 75% that we can parallelise accounts for 97% of the

runtime (Table 4.1) when tested on a single program (the compiler). Parallelising the remaining

3% would require supporting parallelism in at least semi-deterministic code which has higher run-

time costs. It is also unlikely that this part of the program contains much profitable parallelism as

most semi-deterministic code is in the goals of if-then-else goals. The Prolog systems that support

parallelism in goals that can fail and goals with more than one solution must manage variable
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bindings in very complicated ways; this adds a lot of runtime cost. In contrast, Mercury’s simpler

implementation allows it to handle a smaller number of predicates, much more efficiently.

In Prolog, the management of variable bindings in dependent AND-parallel programs adds extra

overhead to unifications of all variables as most Prologs cannot determine which variables are shared

in parallel conjunctions, and none can determine this accurately. Mercury’s implementation, which

uses futures (Section 2.3), increases the costs of unification only for shared variables. A related

comparison, although it is not specific to parallelism, is that unification is an order of magnitude

simpler in Mercury than in Prolog as Mercury does not support logic variables. (The various

WAM unification algorithms have roughly 15–20 steps, whereas the most complicated Mercury

unification operation has 3 steps.) This was also a deliberate design decision.

Other language paradigms

Some languages allow parallelism in other forms, or are created specifically to make parallelism

easy to expose. Parallel languages that do not fall into one of the above paradigms are assessed

here.

Sisal [38] was a data-flow language. Its syntax looked like that of a imperative language, but

this was only syntactic sugar for a pure functional language. It was also one of the first single

assignment languages; using single assignment to implement its pure functional semantics. Sisal

supported implicit data-flow parallelism. Sisal’s builtin types included arrays and streams. Streams

have the same form as cons-lists (Lisp style) except that as one computation produces results on

the stream, another computation may be reading items from the stream. The concept of streams

is not new here, it has been seen in Scheme [1] and probably other languages. A stream may have

only one producer, which makes them different from channels. The other source of parallelism was

the parallel execution of independent parts of loop iterations; as one iteration is being completed,

another iteration can be started. It could also handle completely independent parallel loops.

Sisal’s for loops included a reduction clause, which stated how the different iterations’ results were

summarised into a single overall result, which may be a scalar, an array or a stream. A loop’s

body must not have any effects or make any variable bindings that are visible outside the loop,

so a loop’s only result is the one described by the result clause. The Sisal project is long dead,

which is unfortunate as it appeared to be good for expressing data-flow parallel programs. Sisal

performed very well, giving Fortran a run for its money: in some tests Sisal outperformed Fortran

and in others Fortran outperformed Sisal [38].

Data-parallel languages such as Data Parallel Haskell (DpH) [27, 90], NESL [12] and C* [93]

parallelise operations on members of a sequence-style data structure. DpH calls them parallel

arrays, NESL calls them sequences, and C* calls them domains. DpH and NESL can handle some

forms of nested parallelism. Any operations on these structures are executed in parallel. NESL

and C* have been targeted towards SIMD hardware and DpH has been targeted towards multicore

hardware. Data-parallelism’s strength is that its computations are regular, having a similar, if not

identical, shape and operations. This makes targeting SIMD hardware, and controlling granularity

on SMP hardware easier in these systems than most others.

Data parallel and data-flow parallel languages do not have the same problems (such as embar-

rassing parallelism) as implicit parallel languages. This is because programs with data-parallelism

(and to a lesser extent data-flow parallelism) have a more regular structure, which allows these

systems to generate much more efficient parallel code. However, very few programs have either



14 CHAPTER 1. INTRODUCTION

data-parallelism or data-flow parallelism and cannot be parallelised using these systems. Therefore,

these techniques cannot be used to parallelise most programs.

Reform Prolog [11] handles data-parallelism in a logic language. It finds singly recursive Prolog

predicates, separating their recursive code into the code before the recursive call and the code after.

It compiles them so that they execute in parallel the code before the recursive call on all levels of

the recursion, then they execute the base case, followed by parallel execution of the code after the

recursive call on all levels of the recursion. Reform Prolog only does this for deterministic code

(which we do not think is a problem, as we do the same in Mercury). However Reform Prolog has

other limitations: the depth of the recursion must be known before the loop is executed, parallel

execution cannot be nested, and no other forms of parallelism are exploited. This means that like

the languages above, Reform Prolog cannot effectively parallelise most programs.

1.1.3 Feedback directed automatic parallelisation

As we mentioned above, we believe that it is better to start with a sequential program and in-

troduce parallelism only where it is beneficial, rather than parallelising almost all computations.

Programmers using an explicit parallelism system could follow this principle. However for each

computation the programmer considers parallelising, they must know and keep track of a lot of

information in order to determine if parallel execution is worthwhile. In the context of profiling

and optimisation, it is widely reported that programmers are poor at identifying the hotspots in

their programs or estimating the costs of their program’s computations in general. Programmers

who are parallelising programs must also understand the overheads of parallelism such as spawning

parallel tasks and cleaning up completed parallel tasks. Other things that can also affect paral-

lel execution performance including operating system scheduling and hardware behaviour such as

cache effects. Even if a programmer determines that parallel execution is worthwhile in a partic-

ular case, they must also be sure that adding parallel execution to their program does not create

embarrassing parallelism. They must therefore understand whether there will be enough proces-

sors free at runtime to execute each spawned off computation. When parallel computations are

dependent, such as when futures are used in Multilisp or dependent parallelism is used in Mercury,

programmers must also estimate how the dependencies effect parallelism. In practice programmers

will attempt to use trial and error to find the best places to introduce parallelism, but an incorrect

estimation of the magnitude of any of the above effects can prevent them from parallelising the

program effectively.

We therefore advocate the use of feedback directed parallelism. This technique gathers cost

information from a previous typical execution of the program, and uses that information to esti-

mate the costs of the program’s computations in future executions of the program, parallelising

it accordingly. This is important because the cost of a computation often depends on the size of

its input data. Feedback directed parallelism avoids the runtime cost of such a calculation (as the

size of the input data is not available except at runtime or through profiling). It also avoids the

human-centric issues with explicit parallelism.

Harris and Singh [52] developed a profiler feedback directed automatic parallelisation approach

for Haskell programs. They reported speed ups of up to a factor of 1.8 compared to the sequential

execution of their test programs on a four core machine. However they were not able to improve

the performance of some programs, which they attributed to a lack of parallelism available in

these programs. Their partial success shows that automatic parallelisation is a promising idea
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and requires further research. Their system works by measuring the execution time of thunks and

using this information to inform the compiler how to parallelise the program. Any thunk whose

execution time is above a particular threshold is spawned off for parallel evaluation. This has

two problems, both due to Haskell’s lazy evaluation. The first is that their system does not also

introduce calls to pseq, which would force the evaluation of thunks in order to improve granularity.

Therefore Harris and Singh’s method has the same problems with lazyness that the introduction

of pseq attempts to overcome (see Section 1.1.2). The second problem is that thunk execution is

speculative: when a thunk is created it is usually unknown whether the thunk’s value will actually

be used; and if it is known at compile time that the thunk will be used, the Glasgow Haskell

Compiler (GHC) will optimise it so that the computation is not represented by a thunk at all and

is evaluated eagerly.

Tannier [105] previously attempted to automatically parallelise Mercury programs using profiler

feedback. His approach selected the most expensive predicates of a program and attempted to

parallelise conjunctions within them. This is one of the few pieces of work that attempts to

estimate how dependencies affect the amount of parallelism available. Tannier’s approach counted

the number of shared variables in a parallel conjunction and used this as an analogue for how

restricted the parallelism may be. However in practice most producers produce dependent variables

late in their execution and most consumers consume them early. Therefore Tannier’s calculation

was naive: the times that these variables are produced by one conjunct and consumed by the other

usually do not correlate with the number of dependent variables. Tannier’s algorithm was, in

general, too optimistic about the amount parallelism available in dependent conjunctions. Tannier

did made use of compile-time granularity control to reduce the over-parallelisation that can occur

in recursive code.

To improve on Tannier’s methods, my honours project [17] aimed to calculate when the pro-

ducing conjunct is most likely to produce the dependent values and when the consuming conjunct

is likely to need them. To do this I modified Mercury’s profiler so that it could provide enough

information so that I could calculate the likely production and consumption times. This early work

was restricted to situations with a single dependent variable shared between two conjuncts. It is

described in more detail in Section 2.4.

1.2 General approach

Unfortunately automatic parallelisation technology is yet to be developed to the point where it is

generally useable. Our aim is that automatic parallelisation will be easy to use and will parallelise

programs more effectively that most programmers can by hand. Most significantly, automatic

parallelism will be very simple to use compared with the difficulty of manual parallelisation. Fur-

thermore as programs change, costs of computations within them will change, and this may make

manual parallelisations (using explicit parallelism) less effective. An automatic parallelisation sys-

tem will therefore make it easier to maintain programs as the automatic parallelisation analysis

can simply be redone to re-parallelise the programs. We are looking forward to a future where

programmers think about parallelism no more than they currently think about traditional compiler

optimisations.

In this dissertation we have solved several of the critical issues with automatic parallelism. Our

work is targeted towards Mercury. We choose to use Mercury because it already supports explicit

parallelism of dependent conjunctions, and it provides the most powerful profiling tool of any
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declarative language, which generates data for our profile feedback analyses. In some ways our work

can be used with other programming languages, but most other languages have significant barriers.

In particular automatic parallelism can only work reliably with declaratively pure languages, the

language should also use a strict evaluation strategy to make it easy to reason about parallel

performance, and in the case of a logic language, a strict and precise mode system is required

to determine when variables are assigned their values. Mercury’s support for parallel execution

and the previous auto-parallelisation system [17] is described in Chapter 2. In this dissertation

we make a number of improvements to Mercury’s runtime system that improve the performance

of parallel Mercury programs (Chapter 3). In Chapter 4 we describe our automatic parallelism

analysis tool and its algorithms, and show how it can speedup several programs. In Chapter 5

we introduce a new transformation that improves the performance of some types of recursive

code and achieve almost perfect linear speedups on several benchmarks. The transformation also

allows recursive code within parallel conjunctions to take advantage of tail recursion optimisation.

Chapter 6 describes a proposal to add support for Mercury to the ThreadScope parallel profile

visualisation tool. We expect that the proposed features will very useful for programmers and

researchers alike. Finally in Chapter 7 we conclude the dissertation, tieing together the various

contributions. We believe that our work could also be adapted for other systems; this will be easier

in similar languages and more difficult in less similar languages.



Chapter 2

Background

In this chapter we present background material for the remainder of the thesis. This material

starts with a description of the relevant parts of the Mercury programming language (Section 2.1),

and how explicit parallelism in Mercury is implemented (Sections 2.2 and 2.3). Lastly, Section 2.4

describes preexisting automatic parallelisation implementations for Mercury, which includes algo-

rithms that we use later in the thesis.

2.1 Mercury

Mercury is a pure logic/functional programming language intended for the creation of large, fast,

reliable programs. Although the syntax of Mercury is based on the syntax of Prolog, semantically

the two languages are different due to Mercury’s purity and its type, mode, determinism and

module systems.

Mercury programs consist of modules, each of which has a separate namespace. Individual

modules are compiled separately. Each module contains predicates and functions. Functions are

syntactic sugar for predicates with an extra argument for the their result. In the remainder of this

dissertation we will use the word predicate to refer to either a predicate or a function.

A predicate or function P is defined in terms of a goal G:

P : p(X1, . . . , Xn) ← G predicates

Mercury’s goal types are shown in Figure 2.1. The atomic goals are unifications (which the compiler

breaks down until each one contains at most one function symbol), plain first-order calls, higher-

order calls, typeclass method calls (similar to higher-order calls), and calls to predicates defined

by code in a foreign language (usually C). The compiler may inline foreign code definitions when

generating code for a Mercury predicate. To allow this, the representation of a foreign code

construct includes not just the name of the predicate being called, but also the foreign code that is

the predicate’s definition and the mapping from the Mercury variables that are the call’s arguments

to the names of the variables that stand for them in the foreign code. The composite goals

include sequential and parallel conjunctions, disjunctions, if-then-elses, negations and existential

quantifications. Section 2.2 contains a detailed description of parallel conjunctions.

The abstract syntax does not include universal quantifications: they are allowed at the source

level, but are transformed into a combination of two negations and an existential quantification

17



18 CHAPTER 2. BACKGROUND

G : X = Y | X = f(Y1, . . . , Yn) unifications
| p(X1, . . . , Xn) predicate calls
| X0(X1, . . . , Xn) higher order calls
| m(X1, . . . , Xn) method calls
| foreign(p, [X1 : Y1, . . . , Xn : Yn], foreign code), foreign code
| (G1, . . . , Gn) sequential conjunctions
| (G1 & . . . & Gn) parallel conjunctions
| (G1; . . . ;Gn) disjunctions
| switch X (f1 : G1 ; . . . , fn : Gn) switches
| (if Gcond then Gthen else Gelse) if-then-elses
| not G negations
| some [X1, . . . , Xn] G existential quantification
| promise pure G purity promise
| promise semipure G purity promise

Figure 2.1: The abstract syntax of Mercury

(Equation 2.1). Universal quantifications do not appear in the compiler’s internal goal representa-

tion. Similarly, a negation can be simplified using the constants true and false, and an if-then-else

(Equation 2.2). However the compiler does not make this transformation and negations may appear

in the compiler’s goal representation. Nevertheless, we will not discuss negations in this disser-

tation, since our algorithms’ handling of negations is equivalent to their handling of the below

if-then-else.

all [X1, . . . , Xn] G → not ( some [X1, . . . , Xn] ( not G )) (2.1)

not G → (if G then false else true) (2.2)

A switch is a disjunction in which each disjunct unifies the same bound variable with a different

function symbol. Switches in Mercury are thus analogous to switches in languages like C. If the

switch contains a case for each function symbol in the switched-on value’s type, then the switch is

said to be complete. Otherwise the switch is incomplete. Note that the representation of switches

in Figure 2.1 is not the same as their source code representation; Their source code syntax is the

same as a disjunction. See page 23 for a description of the purity promises.

Note that because a unification goal contains at most one function symbol then any unifications

that would normally have more than one function symbol are expanded into a conjunction of smaller

unifications. This also happens to any unifications that appear as arguments in calls. A goal for

a single expression such as the quadratic equation:

X = (-B + sqrt(B^2 - 4*A*C)) / (2*A)

Will be expanded into 12 conjoined goals:

V_1 = 2, V_2 = B ^ V_1, V_3 = 4,

V_4 = V_3 * A, V_5 = V_4 * C, V_6 = V_2 - V_5,

V_7 = sqrt(V_6), V_8 = -1, V_9 = V_8 * B,

V_10 = V_9 + V_7, V_11 = V_1 * A, X = V_10 / V_11
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:- pred append(list(T), list(T), list(T)).

append([], Ys, Ys).

append([X | Xs], Ys, [X | Zs]) :-

append(Xs, Ys, Zs).

Figure 2.2: append/3’s definition and type signature

As shown here, constants such as integers must be introduced as unifications between a variable

and a function symbol representing the constant. Goals flattened in this way are said to be in

super homogeneous form.

Mercury has a type system inspired by the type system of Hope [23] and is similar to Haskell’s

type system [64]; it uses Hindley-Milner [60, 84] type inference. Mercury programs are statically

typed; the compiler knows the type of every argument of every predicate (from declarations or

inference) and every local variable (from inference). Types can be parametric, type parameters

are written in uppercase and concrete types are written in lower case. As an example, the maybe

type is defined as:

:- type maybe(T)

---> yes(T)

; no.

A value of this type is a discriminated union; which is either yes(T), indicating the presence of

some other value whose type is T; or simply no. The maybe type is used to describe a value

that may or may not be present. The type maybe(int) indicates that an integer value might be

available. The list type uses a special syntax for nil and cons and is recursive:

:- type list(T)

---> [T | list(T)] % cons

; []. % nil

append/3’s type signature and definition are shown in Figure 2.2. Mercury also has a strong mode

system. At any given point in the program a variable has an instantiation state, this is one of free,

ground or clobbered. Free variables have no value, ground variables have a fixed value, clobbered

variables once had a value, but it is no longer available. Partial instantiation can also occur, but

the compiler does not fully support partial instantiation and therefore it is rarely used. Variables

that are ground may also be described as unique, meaning they are not aliased with any other

value. When variables are used, their instantiation state may change; such a change is described

by the initial and final instantiation states separated by the >> symbol. The instantiation states

are the same if nothing changes. Variables can only become more instantiated : the change ‘free to

ground’ is legal, but ‘ground to free’ is not. Similarly, uniqueness cannot be added to a value that

is already bound or ground. Commonly used modes such as input (in), output (out), destructive

input (di) and unique output (uo) are defined in the standard library:

:- mode in == ground >> ground.

:- mode out == free >> ground.

:- mode di == unique >> clobbered.

:- mode uo == free >> unique.
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A predicate may have multiple modes. Here are two mode declarations for the append/3 predicate

above; these are usually written immediately after the type declaration.

:- mode append(in, in, out) is det.

:- mode append(out, out, in) is multi.

When a predicate has a single mode, the mode declaration may be combined with the type signature

as a single declaration such as the following declaration for length/2, the length of a list:

:- pred length(list(T)::in, int::out) is det.

The Mercury compiler generates separate code for each mode of a predicate or function, which we

call a procedure. In fact, the compiler handles individual procedures as separate entities after mode

checking. Mode correct conjunctions, and other conjoined goals such as the condition and then

parts of an if-then-else, must produce values for variables before consuming them. This means

that variables passed as input arguments must be ground before and after the call and variables

passed as output arguments must be free before the call and ground after the call. Similarly, a

variable passed in a destructive input argument will be destroyed before the end of the call; it must

be unique before the call and clobbered afterwords. Referencing a clobbered variable is illegal. A

variable passed in a unique output argument must initially be free and will become unique1.

Unifications can also modify the instantiation state of a variable, Unifying a free term with a

ground term will make the first term ground, and the second term non-unique. Unifying a ground

term with a ground term is an equality test, it does not affect instantiation. Unifying two free

terms is illegal2. The instantiation state of each variable is known at each point within a procedure,

therefore the compiler knows exactly where each variable becomes ground. The mode checking pass

will minimally reorder conjuncts (in both sequential and parallel conjunctions) so that multiple

procedures created from the same predicate can be mode correct.

The mode system enforces three invariants:

Conjunction invariant: In any set of conjoined goals, including not just conjuncts in conjunc-

tions but also the condition and then-part of an if-then-else, each variable that is consumed

by any of the goals is produced by exactly one earlier goal. The else part of an if-then-else is

not conjoined with the condition part so this invariant does not apply to the condition and

else parts.

Branched goal invariant: In disjunctions, switches or if-then-elses, the goal types that contain

alternative branches of execution, each branch of execution must produce the exact same set

of variables that are consumed from outside the branched goal, with one exception: a branch

of execution that cannot succeed (see determinisms below) may produce a subset of this set

of variables.

Negated goal invariant: A negated goal may not bind any variable that is visible to goals outside

it, and the condition of an if-then-else may not bind a variable that is visible anywhere except

in the then-part of that if-then-else.

1The di and uo modes are often used together to allow the compiler to destructively update data structures such
as arrays.

2Aliasing free variables is illegal, Mercury does not support logic variables. This is a deliberate design decision;
it makes unification in Mercury much faster than unification in Prolog.
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(
X = f1(. . .), G1

;
X = f2(. . .), G2

;
X = fn(. . .), Gn

)

switch x (
f1 :

X = f1(. . .), G1

;
f2 :

X = f2(. . .), G2

;
fn :

X = fn(. . .), Gn

)

Figure 2.3: Switch detection example

Each procedure and goal has a determinism, which puts upper and lower bounds on the number

of the procedure’s possible solutions (in the absence of infinite loops and exceptions). Mercury’s

determinisms are:

det procedures succeed exactly once (upper bound is one, lower bound is one).

semidet procedures succeed at most once (upper bound is one, no lower bound).

multi procedures succeed at least once (lower bound is one, no upper bound).

nondet procedures may succeed any number of times (no bound of either kind).

failure procedures can never succeed (upper bound is zero, no lower bound).

erroneous procedures have an upper bound of zero and a lower bound of one, which means they

can neither succeed nor fail. They must either throw an exception or loop forever.

cc multi procedures may have more than one solution, like multi, but they commit to the first

solution. Operationally, they succeed exactly once.

cc nondet procedures may have any number of solutions, like nondet, but they commit to the

first solution. Operationally, they succeed at most once.

Examples of determinism declarations can be seen above in the declarations for append/3 and

length/2. In practice, most parts of most Mercury programs are deterministic (det). Each

procedure’s mode declaration typically includes its determinism (see the mode declarations for

append/3 above). If this is omitted, the compiler can infer the missing information.

Before the compiler attempts to check or infer the determinism of each procedure, it runs

a switch detection algorithm that looks for disjunctions in which each disjunct unifies the same

input variable (a variable that is already bound when the disjunction is entered) with any number

of different function symbols. Figure 2.3 shows an example. When the same variable is used

with multiple levels of unification in a disjunction switch detection will rely on a form of common

subexpression elimination to generate nested switches.

The point of this is that it allows determinism analysis to infer much tighter bounds on the

number of solutions of the goal. For example, if each of the Gi is deterministic (i.e. it has

determinism det) and the various fi comprise all the function symbols in X’s type, then the

switch can be inferred to be deterministic as well, whereas a disjunction that is not a switch and

produces at least one variable cannot be deterministic, since each disjunct may generate a solution.
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:- pred main(io::di, io::uo) is det.

main(S0, S) :-

io.write string("Hello ", S0, S1),

io.write string("world\n", S1, S).

(a) Normal notation

:- pred main(io::di, io::uo) is det.

main(!IO) :-

io.write string("Hello ", !IO),

io.write string("world\n", !IO).

(b) State variable notation

Figure 2.4: Hello world and I/O example

Disjunctions that are not converted into switches can be classified into two separate types of

disjunction. If a disjunction produces one or more variables then it may have more than one

solution (it will be nondet, multi, cc nondet or cc multi). If a disjunction does not produce any

variables then it has at most one solution (it will be either semidet or det). Even when there are

different execution paths that may succeed, the extra execution paths do not affect the program’s

semantics. In practice disjunctions that produce no values are semidet (if they where det the

programmer would have not written them) therefore we call them semidet disjunctions. The

compiler will generate different code for them, since they never produce more than one solution.

Mercury has a module system. Calls may be qualified by the name of the module that defines

the predicate or function being called, with the module qualifier and the predicate or function

name separated by a dot. The io (Input/Output) module of the Mercury standard library defines

an abstract type called the io state, which represents the entire state of the world outside the

program. The io module also defines a large set of predicates that do I/O. These predicates all

have determinism det. and besides other arguments, they all take a pair of io states whose modes

are respectively di and uo (as discussed above, di being shorthand for destructive input and uo for

unique output). The main/2 predicate that represents the entire program (like main() in C) also

has two arguments, a di,uo pair of io states. A program is thus given a unique reference to the

initial state of the world, every I/O operation conceptually destroys the current state of the world

and returns a unique reference to the new state of the world, and the program must return the

final state of the world as the output of main/2. Thus, the program (main/2) defines a relationship

between the state of the world before the program was executed, and the state of the world when

the program terminates. These conditions guarantee that at each point in the execution there is

exactly one current state of the world.

As an example, a version of “Hello world” is shown in Figure 2.4(a). S0 is the initial state of

the world, S1 is the state of the world after printing “Hello ”, and S is the state of the world after

printing “world\n” as well. Note that the difference e.g. between S1 and S represents not just the

printing of “world\n”, but also all the changes made to the state of the world by other processes

since the creation of S1. This threaded state sequentialises I/O operations: “world\n” cannot be

printed until the value for S1 is available.

Numbering each version of the state of the world (or any other state that a program may pass

around) is cumbersome. Mercury has syntactic sugar to avoid the need for this, but this sugar

does not affect the compiler’s internal representation of the program. This syntactic sugar is shown

below, along with the convention of naming the I/O state !IO. The compiler will transform the

example in Figure 2.4(b) into the example in Figure 2.4(a). Any term beginning with a bang

(!) will be expanded into a pair of automatically named variables. The variable names created
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sequence conjunctions from left to right in conjunctions when used with pairs of di/uo or in/out

modes.

Mercury divides goals into three purity categories:

pure goals have no side effects and their outputs do not depend on side effects;

semipure goals have no side effects but their outputs may depend on other side effects;

impure goals may have side effects, and may produce outputs that depend on other side effects.

Semipure and impure predicates and functions have to be declared as such, and calls to them

must be prefaced with either impure or semipure (whichever is appropriate). The vast majority

of Mercury code is pure, with impure and semipure code confined to a few places where it is used

to implement pure interfaces. (For example, the implementations of the all-solutions predicates

in the Mercury standard library use impure and semipure code.) Programmers put promise pure

or promise semipure wrappers around a goal to promise to the compiler (and to human readers)

that the goal as a whole is pure or semipure respectively, even though some of the code inside the

goal may be less pure.

The compiler keeps a lot of information associated with each goal, whether atomic or not. This

includes:

• the set of variables bound (or produced) by the goal;

• the determinism of the goal.

• the purity of the goal

• the nonlocal set of the goal, which means the set of variables that occur both inside the goal

and outside it; and

The language reference manual [55] contains a complete description of Mercury.

2.2 Explicit parallelism in Mercury

The Mercury compiler has several backends, in this dissertation we are only concerned with the

low level C backend. The low level C backend uses an abstract machine implemented using the C

preprocessor. The abstract machine has 1024 general purpose registers and some special registers,

such as the program counter. These registers are virtual: they are mapped onto global variables.

Commonly used virtual registers are mapped to real machine registers. The number of virtual

registers mapped onto real machine registers depends upon the architecture of the physical machine.

The compiler knows the determinism of every procedure. It will generate more efficient code

for deterministic procedures. In particular, code with at most one solution uses the det stack

(deterministic stack), which operates in much the same way as a stack in an imperative language.

The det stack has a single pointer called the stack pointer, it points to the top of the stack. Code

with one or more solutions uses the nondet stack : When a nondeterministic procedure produces

a solution it returns control to its caller but it leaves its stack frame on the nondet stack so that

the procedure’s variables are available on backtracking. Therefore, two stack pointers are used

with the nondet stack, the first points to the top of the stack where new frames are allocated

and the second points to the current stack frame. Mercury only supports parallel conjunctions in
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deterministic code, therefore the nondet stack and its two stack pointers are largely irrelevant for

this dissertation. Somogyi, Henderson, and Conway [101] explains Mercury’s execution algorithm

in more detail.

To support parallel execution, Conway [31] grouped the variables used to implement the abstract

machine’s registers into a structure called an engine. Each engine corresponds to a POSIX Thread

(pthread) [24]. Multiple engines can reside in memory at the same time, allowing each pthread

to maintain its own execution state. The number of engines that a parallel Mercury program will

allocate on startup is configurable by the user. Once the runtime system has been stared the

number of engines in use is fixed.

In non-parallel grades a single engine is allocated statically and is known to reside at a particular

address. However, in parallel grades the multiple engine’s addresses are unknown at compile time.

For each pthread, the runtime system tracks the thread’s engine’s address in a real CPU register3,

therefore there one less virtual register can be mapped to a real register.

Conway [31] also introduced a new structure called a context, known elsewhere as a green

thread. Contexts represent computations in progress. Unlike green threads contexts cannot be

preempted. An engine can either be idle, or executing a context; a context can either be running

on an engine, or be suspended. Separate computations must have separate stacks, therefore each

stack is associated with a context. When a computation is suspended, the registers from the engine

are copied into the context, making the engine free to load a new context.

Stacks account for most of a context’s memory usage. When a context finishes execution it can

either be retained by the engine or have its storage released to the free context pool. This decision

depends on what the engine will do next: if the engine will execute a different context or go to

sleep (because there is no work to do), then the current context is released. Otherwise the engine

holds into a context expecting it to be used to execute a spark.

Sparks represent goals that have been spawned off but whose execution has not yet been started.

Wang [113] introduced sparks with the intention of enabling work stealing as described by Blumofe

and Leiserson [13], Halstead [50] and Kranz, Halstead, and Mohr [68]. We did not implement work

stealing until during my Ph.D. candidature and therefore it is not discussed here, in the background

chapter. We discuss work stealing in Sections 3.4 and 3.6. Sparks are very light weight, being three

words in size. Therefore, compared with contexts, they represent outstanding parallel work very

efficiently; this is beneficial, even without work stealing. When an engine executes a spark, it will

convert the spark into a context. it will use its current context if it has one (the engine’s current

context is always free when the engine attempts to run a spark), or if it does not have a context,

it allocates a new one (from the pool of free contexts if the pool is not empty, otherwise the engine

creates a new one). We will often compare our use of sparks to that of Marlow, Jones, and Singh

[79] since GHC’s runtime system has a similar structure. One of the more significant differences

is that since Haskell is non-strict and Mercury is eager, sparks in Mercury cannot be garbage

collected and must be executed. In comparison, Haskell’s sparks represent speculative execution

of values which may not be needed and can be safely discarded.

The only parallel construct in Mercury is parallel conjunction, denoted as (G1 & . . . & Gn).

All the conjuncts must be det or cc multi, that is, they must all have exactly one solution, or

commit to exactly one solution. This restriction greatly simplifies parallel execution in two ways:

Firstly, it guarantees that there can never be any need to execute (G2 & . . . & Gn) multiple times,

just because G1 has succeeded multiple times. (Any local backtracking inside G1 will not be visible

3If GCC global registers are unavailable, POSIX thread-local storage is used.
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/*

** A SyncTerm. One syncterm is created for each parallel conjunction.

*/

struct MR_SyncTerm_Struct {

MR_Context *MR_st_orig_context;

MR_Word *MR_st_parent_sp;

volatile MR_Unsigned MR_st_count;

};

/*

** A Mercury Spark. A spark is created for a spawned off parallel

** conjunct.

*/

struct MR_Spark {

MR_SyncTerm *MR_spark_sync_term;

MR_Code *MR_spark_resume;

MR_ThreadLocalMuts *MR_spark_thread_local_mutables;

}

Figure 2.5: Syncterms and sparks

to the other conjuncts; bindings made by det code are never retracted.) Supporting parallelisation

of code that might have more than one solution requires new infrastructure for managing bindings.

Any new infrastructure for managing bindings has a significant runtime cost, reducing the benefits

of parallel execution. Secondly, code that might have no solutions also requires extra infrastructure.

Additionally, if G1 may fail then G2 & . . . & Gn’s execution is speculative and may waste resources

since its result may never be needed. Restricting parallelism to det and cc multi code is not a

significant limitation; since the design of Mercury strongly encourages deterministic code, in our

experience, about 75 to 85% of all Mercury procedures are det. (This statistic was calculated

by counting the different determinism declarations in the source code of the Mercury system.)

Furthermore, we expect that most programs spend an even greater fraction of their time in det

code (we know from profiling data that the Mercury compiler does). Existing algorithms for

executing nondeterministic code in parallel have very significant overheads, generating slowdowns

by integer factors. Thus we have given priority to parallelising deterministic code, which we can

do with much lower overhead. We think that avoiding such slowdowns is a good idea, even if it

does mean foregoing the parallelisation of 15 to 25% of a program.

A Mercury engine begins the execution of (G1 & G2 & . . . & Gn) by creating a syncterm

(synchronisation term), a data structure representing a barrier for the whole conjunction. The

syncterm contains: a pointer to the context that began executing the parallel conjunction (the

parent context), a pointer to the stack frame of the procedure containing this parallel conjunction,

and a thread safe counter that tracks the number of conjuncts that have not yet executed their

barrier. After initialising this syncterm, the engine then spawns off (G2 & . . . & Gn) as a spark

and continues by executing G1 itself. The spark contains a pointer to the syncterm, as well as

a pointer to the code it must execute, and another pointer to a set of thread local mutables.4

Figure 2.5 shows these two data structures, the MR prefixes on symbol names are used for Mercury

4Mercury has a module-local mutable feature that supports per thread mutables. This is not relevant to the
dissertation.
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Source code Transformed pseudo-code
MR SyncTerm ST;

MR init syncterm(&ST, 3);

( spawn off(&ST, Spawn Label 1);

G1 G1

& MR join and continue(&ST, Cont Label);

Spawn Label 1:

spawn off(&ST, Spawn Label 2);

G2 G2

& MR join and continue(&ST, Cont Label);

Spawn Label 2:

G3 G3

) MR join and continue(&ST, Cont Label);

Cont Label:

Figure 2.6: The implementation of a parallel conjunction

runtime symbols, preventing their names from clashing with any symbols in C code linked with a

Mercury program. Chapter 3 describes how sparks are managed.

When the engine finishes the execution of the first conjunct (G1) it executes the barrier code

MR join and continue at the end of the conjunct. The barrier prevents the original context

from executing the code that follows the parallel conjunction until each of the conjuncts has been

executed. The barrier also makes several scheduling decisions, see Chapter 3.

Since (G2 & . . . & Gn) is itself a conjunction, it is handled in a similar way: the context

executing it first spawns off (G3 & . . . & Gn) as a spark that points to the sync term created

earlier, and then executes G2 itself. Eventually, the spawned-off remainder of the conjunction

consists only of the final conjunct, Gn, and the context just executes it. Once each conjunct

synchronises using MR join and continue, the original context will continue execution after the

parallel conjunction. The introduction of the barrier at the end of the conjunction can prevent

the compiler from using tail recursion optimisation. This occurs when Gn ended in a recursive

call, and the whole conjunction was the last conjunction in a procedure’s body. We discuss this

problem in more detail and provide our solution in Chapter 5. Figure 2.6 shows an example of

the code generated to execute a parallel conjunction. In this example the first conjunct creates a

spark that represents the execution of the second and third conjuncts, the second conjunct then

creates a spark representing just the third conjunct, which does not create any sparks.

2.3 Dependent AND-parallelism in Mercury

Mercury’s mode system allows a conjunct in a sequential conjunction to consume variables that are

produced by conjuncts to its left, but not to its right. However, The first parallel execution support

for Mercury initially only supported independent AND-parallelism [31], Communication was not

allowed between conjunctions. Wang [113], Wang and Somogyi [114] relaxed this; now parallel

conjunctions have the same mode constraints as sequential conjunctions. Parallel conjunctions,

such as the one in Figure 2.7, may now communicate through shared variables such as Acc1. A

shared variable is a variable that is bound within the parallel conjunction and occurs in more

than one conjunct. Recall that in Mercury, the code location where a variable becomes bound is

known at compile time; therefore, shared variables can be identified at compile time. The compiler
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map_foldl(M, F, L, Acc0, Acc) :-

(

L = [],

Acc = Acc0

;

L = [H | T],

(

M(H, MappedH),

F(MappedH, Acc0, Acc1)

&

map_foldl(M, F, T, Acc1, Acc)

)

).

Figure 2.7: Parallel map foldl

enum MR_produced {

MR_NOT_YET_PRODUCED,

MR_PRODUCED

};

struct MR_Future {

/* lock preventing concurrent accesses */

MercuryLock MR_fut_lock;

/* whether this future has been signalled yet */

enum MR_produced MR_fut_produced;

/* linked list of all the contexts blocked on this future */

MR_Context *MR_fut_suspended;

MR_Word MR_fut_value;

};

Figure 2.8: Future data structure

replaces each shared variable with a future [49], which is used to safely communicate the variable’s

value among conjuncts.

Figure 2.8 shows the future data structure, which contains room for the value of the variable, a

flag indicating whether the variable has been produced yet, a queue of consumer contexts waiting

for the value, and a mutex. The initial value of the future has the flag set to MR NOT YET PRODUCED.

Consumers call future wait/2 when they want to retrieve a value from the future. This

acquires the lock, and if MR fut produced is MR PRODUCED, retrieves MR fut value before releasing

the lock. If MR fut produced was MR NOT YET PRODUCED, then future wait/2 will add the current

context to the list of suspended contexts before unlocking the future. The engine will then suspend

the context and look for other work. Once the value of the future is provided, the context will

be woken up along with the others on the list of suspended contexts. future wait/2 contains

an optimisation: it will check MR fut produced before acquiring the lock as well as after. If it

is MR PRODUCED before the lock is acquired, then future wait/2 can safely retrieve the future’s

value without using the lock. Note also that because Mercury’s mode system ensures that variable

dependencies can never form cycles, the compiler’s use of futures cannot create a deadlock.
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A producer will call future signal/2 to place a value into a future and wake up any sus-

pended contexts. future signal/2 will also acquire the lock to ensure that it does not race with

any future wait/2. future signal/2 writes the value of the future to memory, before it sets

MR fut produced to MR PRODUCED. These operations are separated by a memory barrier to ensure

that they are visible to other threads in this order. After releasing the lock, future signal/2 will

schedule the suspended contexts. Because future signal/2 has no outputs and is deterministic,

it must be declared as impure so that the compiler will not optimise away calls to it.

Some readers may wonder whether futures are similar to POSIX condition variables [24]. While

both name their operations wait and signal, they are different in two significant ways. First, futures

store a value as well as a state, POSIX condition variables store only their state. Second, when a

future is signalled, all its consumers are woken, whereas only one of a POSIX condition variable’s

waiters is woken. A POSIX condition variable is more similar to a semaphore.

To minimise waiting, the compiler pushes future signal/2 operations on each future as far

to the left into the producer conjunct as possible, and it pushes future wait/2 operations as far

to the right into each of the consumer conjuncts as possible. This means not only pushing them

into the bodies of predicates called by the conjunct, but also into the bodies of the predicates they

call, with the intention that on each execution path each future signal/2 is put immediately

after the primitive goal that produces the value of the variable, and each future wait/2 is put

immediately before the leftmost primitive goal that consumes the value of the variable. Since the

compiler has complete information about which goals produce and consume which variables, the

only things that can stop the pushing process are module boundaries and higher order calls. This is

because the compiler cannot push a future wait/2 or future signal/2 operation into the body

of a predicate that it does not have access to or into a predicate that it cannot identify.

Any variable is produced exactly once along any execution path, and therefore there is exactly

one future signal/2 operation along any path. However, a variable may be used any number of

times along an execution path, therefore there can be any number of future wait/2 operations

along a path. The maximum number of future wait/2 operations along a path is equal to the

number of times the future’s value is used. Reading a future using future wait/2 is more expensive

than reading a conventional variable. Therefore, we want to minimise the number of future wait/2

operations that can be executed along a path. The minimum number of future wait/2 operations

along a path is either zero or one, depending on whether a variable is used on that path. This can

be done either by adding an extra variable to track the value of the future, setting this variable’s

value from the first future wait/2 operation; or by introducing a new operation, future get/2

whose runtime cost is lower and that can safely be used for the second and subsequent future -

wait/2 operations. future get/2 is useful in cases where it is difficult or impossible to track the

value of an extra variable.

An implementor can choose among always using a future wait/2 operation or trying to opti-

mise the second and subsequent calls to future wait/2 or some point on a scale between these two

extremes. There is a trade-off to be made here. The first option has very little analysis at com-

pile time but has worse runtime performance, the second option can require a lot of compile time

analysis and has ideal runtime performance. We have chosen to use a simple method to reduce the

number of future wait/2 operations: When variables are replaced by futures and future wait/2

operations are inserted, the transformation tracks whether there is a future wait/2 operation on

every success path leading to the current goal. If this is true and the current goal wants to access

the value of the future then a future get/2 operation is used instead of a wait operation.
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map_foldl(M, F, L, Acc0, Acc) :-

(

L = [],

Acc = Acc0

;

L = [H | T],

future_new(FutureAcc1),

(

M(H, MappedH),

F(MappedH, Acc0, Acc1),

future_signal(FutureAcc1, Acc1)

&

map_foldl_par(M, F, T, FutureAcc1, Acc)

)

).

map_foldl_par(M, F, L, FutureAcc0, Acc) :-

(

L = [],

future_wait(FutureAcc0, Acc0),

Acc = Acc0

;

L = [H | T],

future_new(FutureAcc1),

(

M(H, MappedH),

future_wait(FutureAcc0, Acc0),

F(MappedH, Acc0, Acc1),

future_signal(FutureAcc1, Acc1)

&

map_foldl_par(M, F, T, FutureAcc1, Acc)

)

).

Figure 2.9: map foldl with synchronisation

While future signal/2 actually makes the value of a future available, we have to consider

that future wait/2 has the same effect since after a call to future wait/2 the value of a future

is available and it may not have been available earlier. In other words, future wait/2 has the

side effect of guaranteeing that the value of the future is available. future get/2 can only be

called when the value of the future is true, therefore it is affected by future wait/2’s side effect.

Therefore, future get/2 must be semipure and future wait/2 must be impure. This prevents

the compiler from optimising away or moving a call to future wait/2 that is necessary to make

a call to future get/2 safe.

Given the map foldl predicate in Figure 2.7, this synchronisation transformation generates the

code in Figure 2.9.

2.4 Feedback directed automatic parallelism in Mercury

Some of the work described in this section contributed towards my honours research project, which

contributed towards the Degree of Bachelor of Computer Science Honours. I have improved these
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source
compile
prof

profile analyse feedback

compile
par

result

Figure 2.10: Profiler feedback loop

contributions during my Ph.D. candidature. The following were part of my honours project: the

coverage profiling transformation (Section 2.4.3), the related variable use analysis (Section 2.4.4)

and the feedback framework (Section 2.4.5). Other parts of this section include: The Mercury deep

profiler [32] (Section 2.4.1) and Tannier [105]’s work on automatic parallelism (Section 2.4.2).

Most compiler optimisations work on the representation of the program in the compiler’s mem-

ory alone. For most optimisations this is enough. However, automatic parallelisation is sensitive

to variations in the runtime cost of parallelised tasks. This sensitivity increases when dependent

parallelisation is used. For example, a search operation on a small list is cheap, compared with

the same operation on a large list. It may not be useful to parallelise the search on the small

list against some other computation, but it will usually be useful to parallelise the search on the

large list against another computation. It is important not to create too much parallelism: The

hardware is limited in how many parallel tasks it can execute, any more and the overheads of

parallel execution will slow the program down. Therefore, it is not just sub-optimal to parallelise

the search of the small list, but detrimental. Using a description of a program’s typical inputs

one could calculate the execution times of the program’s procedures. However it is more direct,

more robust and much easier to simply use a profiler to measure the typical execution times of

procedures in the program while the program is executing with typical inputs, especially when we

have such a powerful profiler already available (Section 2.4.1). Therefore, profiling data should be

used in auto-parallelisation; it allows us to predict runtime costs for computations whose runtime

is dependent on their inputs.

To use profiling data for optimisations, the usual workflow for compiling software must change.

The programmer compiles the source code with profiling enabled and runs the resulting program on

representative input. As the program terminates, it writes its profiling data to disk. The profiling

data includes a bytecode representation of the program, similar to the compiler’s representation.

The analysis tool reads this file, and writes out a description of how to parallelise the program as

a feedback file. The programmer then re-compiles their program, this time with auto-parallelism

enabled. During compilation, the compiler reads the feedback file and introduces parallelism into

the resulting program at the places indicated by the feedback file. Figure 2.10 shows this workflow.

A common criticism of profile directed optimisation is that the programmer will have to compile

the program twice, and run it at least once to generate profiling data. “If I have to run the

program to optimise it, then the program has already done its job, therefore there is no point

continuing with the optimisation?” The answer to this is that a program’s lifetime is far more

than a single execution. A program will usually be used many times, and by many people. Each
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time the optimisation will have a benefit, this benefit will pay off the cost of the feedback directed

optimisation. We expect that programmers will use feedback-directed optimisations when the they

are building a release candidate of their program, after they tested the software and fixed any bugs.

Another criticism is that if the program is profiled with one set of input and used with another,

then the profile will not necessarily represent the actual use of the program, and that the optimi-

sation may not be as good as it should be. In practice parallelism is used in very few places within

a program: in the Mercury Compiler itself there are only 34 (Page 120) conjuncts in 28,4485 pro-

cedures that may be worth parallelising. This means that most differences in performance are not

likely to affect the very small part of the program where parallelism may be applicable. Further-

more, as parallelisation decisions are binary, either ‘do not parallelise’ to ‘parallelise’. a numerical

difference in performance will not usually alter the binary parallelisation decision. So in most cases,

auto-parallelisation based on the original input data is equivalent to auto-parallelisation based on

slightly different input data.

In cases where different input data causes the program to be parallelised differently, the result

is often going to be near-optimal. In these cases the main benefits of automatic parallelisation are

unaffected, which are: automatic parallelisation will always be cheaper than manual parallelisation,

as it requires much less time and does not require a company to hire a parallelisation expert.

Therefore, automatic parallelisation will be preferred in all but the most extreme situations.

2.4.1 The deep profiler

Typical Mercury programs make heavy use of code reuse, especially through parametric polymor-

phism and higher order calls. This is also true for other declarative languages. For example, while

a C program may have separate tables for different kinds of entities, for whose access functions

the profiler would gather separate performance data, most Mercury programs would use the same

polymorphic code to handle all those tables, making the task of disentangling the characteristics

of the different tables infeasibly hard.

[32] solved this problem for Mercury by introducing deep profiling. Mercury’s deep profiler

gathers much more information about the context of each measurement than traditional profilers

such as gprof [43] do. When it records the event of a call, a memory allocation or a profiling clock

interrupt, it records with it the chain of ancestor calls, all the way from the current call to the

entry point of the program (main/2). To make this tractable, recursive and mutually recursive calls,

known as strongly connected components (SCCs), must be folded into a single memory structure.

Therefore, the call graph of the program is a tree (it has no cycles) and SCCs are represented as

single nodes in this tree.

Deep profiling allows the profiler to find and present to the user not just information such as

the total number of calls to a procedure and the average cost of a call, or even information such as

the total number of calls to a procedure from a particular call site and the average cost of a call

from that call site. It will provide information such as the total number of calls to a procedure

from a particular call site when invoked from a particular chain of ancestor SCCs and the average

cost of a call in that context. We call such a context for profiling data an ancestor context. For

example, it could tell that procedure h called procedure i ten times when h’s chain of ancestors was

main→ f → h, while h called i only seven times when h’s chain of ancestors was main→ g → h,

the calls from h to i took on average twice as long from the main → g → h context as from

5The number of ProcStatic structures in the same profiling data that was used to provide the figures on Page 120.
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main

f h i

g h i

10 calls

7 calls

Figure 2.11: Example call graph

main→ f → h, so that despite making fewer calls to i, main→ g → h→ i took more time than

main→ f → h→ i. This is shown in Figure 2.11.

It can be difficult to locate a single goal within the body of a procedure. This is made more

difficult as nested unifications are flattened into super homogeneous form (Section 2.1 on page 18),

meaning that what might be a single line of code in a source file can be a conjunction of dozens of

goals. Therefore the profiler uses goal paths to uniquely identify a sub goal within a procedure’s

body. A goal path is a list of goal path steps, each step describes which sub-goal to recurse into

when traversing a goal structure from its root (the procedure as a whole) to either its leaves (atomic

goals) or some compound goal. The goal path “c3;d2” refers to the second disjunct “d2” within

the third conjunct “c3”. Goal paths where first introduced to support debugging in Mercury [100].

The deep profiler was written after the debugger and was able to re-use them.

We use four structures during profiling.

ProcDynamic represents a procedure within the program’s call tree. There can be multiple

ProcDynamic structures for any given procedure: the same procedure will usually be called

from a number of different contexts in the program.

CallSiteDynamic represents a call site in the program’s call tree. As with ProcDynamic, there

may be multiple CallSiteDynamic structures for any given call site. Profiling data for the

call site & context is stored within its CallSiteDynamic structure. A ProcDynamic structure

has an array of pointers to CallSiteDynamic structures representing the calls used during the

execution of the procedure. A CallSiteDynamic structure has a pointer to the ProcDynamic

structure of its callee. These links represent the call graph of the program.

Higher order and method calls are tracked by the ProcDynamic structure of the caller, the

array of pointers is actually an array of arrays of pointers, multiple items in the second array

represent different higher order values at the same call site. This means that a number of

CallSiteDynamic structures can represent a single higher-order call site. This is actually

rare: A call site and ancestor context are usually used with a single higher order value. Other

higher order values are associated with other ancestor contexts and are therefore represented

by other parts of the call graph.

ProcStatic represents the static data about a procedure This data includes the procedure’s

name, arity, source file and line number. Because multiple ProcDynamic structures may

exist for the same procedure, this structure is used to factor out common information. Each

ProcDynamic structure has an pointer to its ProcStatic structure. Each procedure in the
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program has a single ProcStatic structure. Each ProcStatic structure has an array of

pointers to the CallSiteStatic structures of the calls its procedure makes.

CallSiteStatic represents static data for a call site. This includes the procedure the call site

is found in, the line number, the goal path and a pointer to the ProcStatic structure of

the callee (if known statically). As with ProcStatic structures, CallSiteStatic structures

reduce the memory usage of CallSiteDynamic structures by factoring out common informa-

tion. Each call site in the program has a single CallSiteStatic structure.

The profiling data is stored on disk using the same four structures that where used while capturing

the data. When the profiling tool reads in this data, it will build the call graph and generate the

list of SCCs (which Conway and Somogyi [32] call cliques) each SCC is used to create a Clique

data structure. It also constructs several indexes, these indexes together with the Cliques make

traversing the program’s profile (the other structures) more efficient. This data is used both by

the interactive user interface, and automated tools.

Profilers have traditionally measured time by sampling the program counter at clock interrupts.

Unfortunately, even on modern machines, the usual portable infrastructure for clock interrupts

(e.g., SIGPROF on Unix) supports only one frequency for such interrupts, which is usually 60

or 100Hz. This frequency is far too low for the kind of detailed measurements the Mercury deep

profiler wants to make. For typical program runs of few seconds, it results in almost all calls having

a recorded time of zero, with the calls recording a nonzero time (signifying a profiling interrupt

during their execution) being selected almost at random.

We have therefore implemented a finer-grained measure of time that turned out to be very

useful even though it is inherently approximate. This measure is call sequence counts (CSCs): the

profiled program basically behaves as if the occurrence of a call signified the occurrence of a new

kind of profiling interrupt. In imperative programs, this would be a horrible measure, since calls

to different functions often have hugely different runtimes. However, in declarative languages like

Mercury there are no explicit loops; what a programmer would do with a loop in an imperative

language must be done by a recursive call. This means that the only thing that the program can

execute between two calls is a sequence of primitive operations such as unifications and arithmetic.

For any given program, there is a strict upper bound on the maximum length of such sequences,

and the distribution of the length of such sequences is very strongly biased towards very short

sequences of half-a-dozen to a dozen operations. In practice, we have found that the fluctuations

in the lengths of different sequences can be ignored for any measurement that covers any significant

number of call sequence counts, say more than a hundred. The only drawback that we have found

is that on 32 bit platforms, its usability is limited to short program runs (a few seconds) by the

wraparound of the global CSC counter; This has not been a concern for a number of years. On 64

bit platforms, the problem would only occur on a profiling run that lasted for years.

2.4.2 Prior auto-parallelism work

Tannier [105] describes a prior attempt at automatic parallelism in Mercury. In his approach, an

analysis tool gathered parallelisation feedback data in the form of a list of the procedures with the

highest costs in the program. Ancestor context independent data was used, meaning that all uses

of a procedure were considered when ranking that procedure within the list. The user was able to

choose between using the mean or median execution time of a procedure, measured in CSCs. Only
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Figure 2.12: Overlap of p and q

procedures whose cost was greater than a configurable threshold were included in the feedback

data. The analysis did not use a representation of the program, as at that time the profiler did

not support that capability.

The compiler used the feedback data to make parallelisation decisions. Each procedure being

compiled by the compiler was searched for calls that appeared in the list of top procedures and

calls to these were parallelised against similar calls if they where independent or had fewer shared

variables than another configurable limit.

For my honours project I attempted automatic parallelisation of Mercury [17]. My work differed

from Tannier’s in a number of ways: The first differences is that at the time of my work, the deep

profiler was able to access a representation of the program (my work was the motivation for

this feature). This allowed my analysis to use both profiling data and the representation of the

program at the same time, making it possible to measure to the times at which variables are

produced and consumed within parallel conjuncts. The analysis uses this to calculate how much

parallelism is available, for conjunctions with a single shared variable. Consider the timeline shown

in Figure 2.12, In the sequential case the conjuncts p and q are shown side-by-side. Below this, q

is parallelised against p. The future A is communicated from p to q, q will execute the future -

wait/2 operation for A before p executed future signal/2, therefore future wait/2 will suspend

q. Later, p executes future signal/2, producing A and scheduling q for execution. The formula

used to compute the execution times in the sequential and parallel cases, and the speedup due to

parallelism is:

TSequential = Tp + Tq

TDependentQ = max(TBeforeProduceP , TBeforeConsumeQ) + TAfterConsumeQ

TParallel = max(Tp, TDependentQ) + TOverheads

Speedup =
TSequential

TParallel

This describes the speedup owing to parallelisation of two conjuncts, p and q. whose execution

times are Tp and Tq. In the parallel case q’s execution time is TDependentQ since it accounts for

the q’s dependency on A. Except for this small difference, the calculation of parallel execution time
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and speedup are the commonly used formulas for many parallel execution cost models. We will

greatly expand and generalise this calculation in Chapter 4.

This cost model requires information about when a shared variable is produced by the first

conjunct and when it is consumed by the second. To provide this information, we introduced a

variable use time analysis (Section 2.4.4), that depends upon information about how often different

goals are executed, called coverage. The deep profiler provides coverage information for most goals,

however we need coverage information for all goals and therefore we introduced coverage profiling.

2.4.3 Coverage profiling

Code coverage is a term often used in the context of debugging and testing: it refers to which

parts of a program get executed and which do not. It is used to determine the completeness of a

test-suite. We use the term code coverage, which we often abbreviate to “coverage”, to describe

how often a given piece of code is executed. Thus, we have extended the concept of coverage from a

binary “has been executed” or “has not been executed” to a more informative “has been executed

N times”.

The traditional Prolog box model [25] describes each predicate as having four ports through

which control flows. Control flows into a predicate through either the call or redo ports, control

flows out of a predicate through either the exit or fail ports. These describe: a call being made to

the predicate, re-entry to the predicate after it has exited to check for more solutions, the predicate

exiting with a solution, or the predicate failing because there are no more solutions. Mercury adds

an extra port, known as the exception port: when a predicate throws an exception it returns control

via the exception port. Provided that execution has finished, control must have left a predicate

the same number of times that it entered it.

Calls+Redos = Exits+ Fails+ Exceptions

Mercury adds additional invariants for many determinism types. For example, deterministic code

may not redo or fail, therefore these port counts will be zero. For each call and its ancestor context

the deep profiler will track the number of times each port is used, Port counts provide code coverage

information for predicate and call site entry and exit.

Code coverage of many goals can be inferred. In the simple case of a conjunction containing

deterministic conjuncts, each conjunct will have the same coverage as the one before it provided

that the earlier goal does not throw an exception. There are two types of exception, those that

are caught and those that terminate the program. When an exception terminates the program,

we are not interested in that execution’s profile, when an exception is caught and the program

recovers we are interested in coverage, however this is rare. A deterministic conjunction containing

a single call can have complete coverage information inferred for all of its conjuncts, provided that

we are willing to loose a little accuracy if an exception is thrown. Similarly, the coverage before

an if-then-else can be inferred as the sum of the coverage at the beginning of the then and else

branches, assuming that the condition has at most one solution. The same is true for the ends

of these branches and the end of the if-then-else. The coverage at the beginning of the then part

is also equal to the number of times the condition of the if-then-else succeeds. The coverage of a

switch is the sum of the branch’s coverage plus the number of times the switch may fail. Many

switches are known to be complete, and therefore they cannot fail. This can allow us to infer the

missing coverage of a single branch provided that we know the coverage of all the other branches
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map(P, Xs0, Ys) :-

(

coverage point(ProcStatic, 0);

Xs0 = [],

Ys = []

;

Xs0 = [X | Xs],
P(X, Y),

map(P, Xs, Ys0),

Ys = [Y | Ys0]
).

Figure 2.13: Coverage annotated map/3.

plus the coverage of the switch. Or to infer the coverage of the switch provided that we know the

coverage of all the branches.

Based on these observations, we have implemented a coverage inference algorithm in the deep

profiler. The coverage inference algorithm makes a single forward pass tracking the coverage before

the current goal if known, when it reaches a call, it can read the port counts of the call site to

set the coverage before and after the current goal. When it encounters a deterministic goal, it can

set that goal’s coverage to the coverage before the current goal. The inference algorithm will also

infer the coverage of the then and else parts of an if-then-else, as described above; as well as the

coverage of the last branch of a complete switch, as described above.

Unfortunately, port counts alone will not provide complete coverage information. For exam-

ple, a conjunction containing a sequence of semidet unifications will have incomplete coverage

information: we cannot know how often each individual unification fails. We introduced coverage

profiling as part of Mercury’s deep profiler to add extra instrumentation to gather coverage data

where it would otherwise be unknown. The coverage inference algorithm will look for a coverage

point whenever it cannot infer the coverage from earlier goals.

We want to reduce the number of coverage points added to a procedure while still allowing

inference of complete coverage information. This is because instrumentation, such as a coverage

point, can slow the program down and sometimes distort the profile, 6 therefore preventing su-

perfluous instrumentation from being added is desirable. We do this in the coverage profiling

transformation. The coverage profiling transformation makes the exact same traversal through the

program as the coverage inference algorithm. Instead of tracking the coverage before the current

goal the coverage profiling transformation tracks a boolean that indicates whether or not coverage

would be known before the current goal based on the goals before it. When this boolean becomes

false, the transformation will introduce a coverage point at that place in the code and set the value

to true. This has the effect of placing a coverage point at exactly the location at which the cover-

age inference algorithm would attempt to look up coverage from a coverage point. The coverage

profiling transformation will set the value of its boolean to false after a goal with a determinism

other than det or cc multi and which does not provide coverage data of its own. It also sets the

boolean to false at the beginning of a branch whose coverage cannot be inferred.

Figure 2.13 shows map/3 annotated with a coverage point. The forward pass of the coverage

inference algorithm cannot infer coverage at the beginning of this switch arm, and therefore the

6Automatic parallelism analysis is not affected by profile distortion since it uses call sequence counts to measure
time. Nevertheless, avoiding profile distortion is good as programmers may continue to use the profiler’s other time
measurements.
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coverage profiling transformation in the deep profiler introduced a coverage point at that position.

It is true that the coverage point could be removed and the port counts of the recursive code

in this example could be used, but doing so would require multiple passes for both algorithms,

making them slower. Coverage profiling adds a small cost to profiling (6% slower than normal deep

profiling); it is not a high priority to optimise this further.

During my honours project I added three new fields to the ProcStatic structure, which we

introduced in Section 2.4.1. These fields are: a constant integer representing the number of coverage

points in this procedure; an array of constant structures, each describing the static details of a

coverage point; and an array of integers representing the number of times each coverage point

has been executed. The coverage point instrumentation code refers to the procedure’s ProcStatic

structure and increments the coverage point’s counter at the appropriate index. The static coverage

data, which includes the goal path of the coverage point and the type of the coverage point (branch

or post-goal), is written out with the profile. We were concerned that a procedure might require

dozens of coverage points, each one consuming memory, therefore to avoid the risk of consuming

large amounts of memory we choose to associate coverage points with ProcStatic structures rather

than the more numerous ProcDynamic structures. Therefore coverage data is not associated with

ancestor contexts in the way that other profiling data is. The auto-parallelisation work described

in my honours report did not expect to use ancestor context specific coverage information.

The coverage point in Figure 2.13 has two arguments, the first points to the ProcStatic

containing this procedure’s coverage points, the second is the index within this procedure’s coverage

point arrays for this coverage point. Although the instrumentation code appears to be a call, it is

implemented as a C preprocessor macro as it is very small and should be inlined into the compiled

procedure.

2.4.4 Variable use time analysis

The automatic parallelism analysis used in my honours report considers conjunctions with at most

two conjuncts and at most one shared variable. To predict how much parallelism is available, it

needs to know when that variable is produced by the first conjunct, and when it is first consumed

by the second. These times are calculated in units of call sequence counts.

During compilation of dependent conjunctions, the compiler creates a future to replace any

shared variable. The compiler will attempt to push that future into the goal that produces its

value, so that, the future signal/2 operation is after, and as close as possible to, the unification

that binds the variable.

The algorithm for computing the expected production time of a shared variable looks at the

form of the conjunct that produces it, this is shown in Algorithm 2.1. This algorithm is only

invoked on goals that are either det or cc multi, and that produce the variable V . For each goal

type, it calculates at what point within the goal’s execution the future for V will signalled. As

noted above, a future cannot be pushed into certain goal types, such as higher order calls, method

calls, foreign code or calls that cross module boundaries. Therefore, a conservative answer is used

in these cases, the conservative answer is ‘at the end of G’s execution’. This is conservative not just

because it is typical, but because it will avoid creating parallelisations that are not likely to speed

up the program. The case for foreign calls does not measure a call sequence count for the foreign

call itself, so we add one. Goals such as unifications are trivial, and always have zero cost, therefore

they must produce their variable after zero call sequence counts of execution. Parallel conjunctions
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Algorithm 2.1 Variable production time analysis

prodtime V G=











time G if G is not executed or erroneous

prodtime’ V G if G is det or cc multi

cannot happen otherwise

prodtime’ V JX = Y K = 0
prodtime’ V JX = f(. . .)K = 0
prodtime’ V Jp(X1, . . . , Xn)K = call prodtime V p [X1, . . . , Xn]
prodtime’ V JXn+1 = f(X1, . . . , Xn)K= call prodtime V f [X1, . . . , Xn, Xn+1]
prodtime’ V JX0(X1, . . . , Xn)K = time of call
prodtime’ V Jm(X1, . . . , Xn)K = time of call
prodtime’ V Jforeign(. . .)K = time of call +1

prodtime’ V JG1, G2, . . . , GnK =











prodtime V G1 if G1 binds V
(

time G1+

prodtime V JG2, . . . , GnK
otherwise

prodtime’ V JG1 & . . . &GnK = cannot happen
prodtime’ V JG1 ; . . . ; GnK = cannot happen

prodtime’ V

s
switchX (f1 : G1 ;
. . . , fn : Gn)

{
=

∑

1≤i≤n

PrGi
× prodtime V Gi

prodtime’ V

s
ifCond thenThen

elseElse)

{
= time Cond+

(

PrThen × prodtime V Then+
PrElse × prodtime V Else

)

prodtime’ V JnotGK = cannot happen
prodtime’ V Jsome [X1, . . . , Xn]GK = prodtime V G
prodtime’ V Jpromise pureGK = prodtime V G
prodtime’ V Jpromise semipureGK = prodtime V G

call prodtime V P Args=

{

prodtime ParamsB if P is in the current module

time B otherwise

where Params= arg to param V Args
B = body P

time G= The duration of G’s execution.
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are converted into sequential conjunctions before profiling, they will not appear in the algorithm’s

input. A negation cannot produce a variable and therefore it cannot produce V , the algorithm does

not need to handle negations. The algorithm is only invoked on goals that are det or cc multi,

and the only disjunction that can be det or cc multi is one that does not produce outputs, and

therefore cannot produce V , the algorithm does not need to handle disjunctions either.

The algorithm handles conjunctions by determining which conjunct Gk in the conjunction

G1, . . . , Gk, . . . , Gn produces the variable. The production time of the variable in the conjunction

is its production time in Gk plus the sum of the durations of G1, . . . , Gk−1.

We handle switches by invoking the algorithm recursively on each switch arm, and computing

a weighted average of the results, with the weights being the arms’ entry counts as determined

by coverage inference. We handle if-then-elses similarly. we need the weighted average of the two

possible cases: the variable being generated by the then arm versus the else branch. (It cannot

be generated by the condition: variables generated by the condition are visible only from the

then branch.) To find either number, we invoke the algorithm on either the then or else branch,

depending on which is applicable, and add this to the time taken by the condition. Note that this

is the time taken by the condition on average (whether or not it fails), we do not have access to

timing information dependent on a goal’s success or failure. This is not a concern, most condition

goals are inexpensive, therefore their runtimes do not vary significantly.

Using the weighted average for switches and if-then-elses is meaningful because the Mercury

mode system dictates that if one branch of a switch or if-then-else generates a variable, then they

all must do so. The sole exception is branches that are guaranteed to abort the program, whose

determinism is erroneous. We use a weight of zero for erroneous branches because optimising

them does not make sense. Coverage profiling was introduced to provide the weights of switch and

if-then-else arms used by this algorithm.

If the goal is a quantification, then the inner goal must be det, in which case we invoke the

algorithm recursively on it. If the inner goal were not det, then the outer quantification goal could

be det only if the inner goal did not bind any variables visible from the outside. Therefore, if

the analysis is invoked on a quantification, we already know that this is because the quantification

produces the variable, and therefore the inner goal must be det.

The algorithm we use for computing the time at which a shared variable is first consumed by

the second conjunct is similar, it is shown in Algorithm 2.2. The main differences are that negated

goals, conditions and disjunctions are allowed to consume variables, and some arms of a switch or if-

then-else may consume a variable even if other arms do not. The code that pushes wait operations

into goals can be configured to include a future wait/2 operation on every execution path so that

when the goal completes, it is guaranteed that a future wait/2 operation has taken place. The

variable use analysis should reflect the compiler’s configuration with respect to how future wait-

/2 operations are placed but it does not. It makes the conservative assumption that waits are

always placed in switch arms of switches and if-then-elses that do not consume the variable. This

assumption is a conservative approximation. This can prevent introducing parallelism that leads

to a slow-down. To make this assumption, the algorithm checks if a goal consumes a variable,

if it does not, it returns the goal’s execution time as the consumption time of the variable. The

other important difference is that when making any other conservative assumption such as when

the algorithm finds a higher order call, the consumption time used is zero (it was the cost of the

call when analysing for productions)
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Algorithm 2.2 Variable consumption time analysis

constime V G=











0 if G is not executed or erroneous

constime’ V G if G is det, semidet, failure, cc multi or cc nondet

cannot happen otherwise

constime’ V JX = Y K = 0
constime’ V JX = f(. . .)K = 0
constime’ V Jp(X1, . . . , Xn)K = call constime V p [X1, . . . , Xn]
constime’ V JXn+1 = f(X1, . . . , Xn)K= call constime V f [X1, . . . , Xn, Xn+1]
constime’ V JX0(X1, . . . , Xn)K = 0
constime’ V Jm(X1, . . . , Xn)K = 0
constime’ V Jforeign(. . .)K = 0

constime’ V JG1, G2, . . . , GnK =











constime V G1 if G1 consumes V
(

time G1+

constime V JG2, . . . , GnK
otherwise

constime’ V JG1 & . . . &GnK = cannot happen

constime’ V JG1 ; . . . ; GnK =











constime V G1 if G1 consumes V
(

time G1+

constime V JG2, . . . , GnK
otherwise

constime’ V

s
switchX (f1 : G1 ;

. . . , fn : Gn)

{
=

∑

1≤i≤n

PrGi
× constime V Gi

constime’ V

s
ifCond thenThen

elseElse)

{
= iteconstime V CondThenElse

constime’ V JnotGK = constime V G
constime’ V Jsome [X1, . . . , Xn]GK = constime V G
constime’ V Jpromise pureGK = constime V G
constime’ V Jpromise semipureGK = constime V G

iteconstime V Cond

ThenElse
=











constime V Cond
if Cond
consumes V

time Cond+ PrThen × constime V Then+

PrElse × constime V Else
otherwise

call constime V P Args=

{

constime ParamsB if P is in the current module

0 otherwise

where Params= arg to param V Args
B = body P

time G= The duration of G’s execution.
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For example suppose the first appearance of the variable (call it X) in a conjunction G1, . . . , Gn

is in Gk, and Gk is a switch. If X is consumed by some switch arms and not others, then on some

execution paths, the first consumption of the variable may be in Gk (a), on some others it may

be in Gk+1, . . . , Gn (b), and on some others it may not be consumed at all (c). For case (a), we

compute the average time of first consumption by the consuming arms, and then compute the

weighted average of these times, with the weights being the probability of entry into each arm,

as before. For case (b), we compute the probability of entry into arms which do not consume

the variable, and multiply the sum of those probabilities by the weighted average of those arms’

execution time plus the expected consumption time of the variable in Gk+1, . . . , Gn. For case (c)

we pretend X is consumed at the very end of the goal, and then handle it in the same way as (b).

This is because for our overlap calculations, a goal that does not consume a variable is equivalent

to a goal that consumes it at the end of its execution.

2.4.5 Feedback framework

Automatic parallelism is just one use of profiler feedback. Other optimisations such as inlining,

branch hints and type specialisation might also benefit from profiling feedback.

During my honours project I designed and implemented a generic feedback framework that

allows tools to create feedback information for the compiler. These tools may include the profiler,

the compiler itself, or any tool that links to the feedback library code. Any Mercury value can

be used as feedback information, making the feedback framework flexible. New feedback-directed

optimisations may require feedback information from new analyses. We anticipate that many new

feedback information types will be added to support these optimisations. We also expect that

an optimisation may use more than one type of feedback information and that more than one

optimisation may use the same feedback information.

The on-disc format for the feedback information is very simple: it contains a header that

identifies the file format, including a version number, followed by a list of feedback information

items, stored in the format that Mercury uses for reading and writing terms. When the feedback

library reads the file in it will check the file format identifier and version number, then it will

read the list of information items and check that no two items describe the same type of feedback

information.

The API allows developers to open an existing file or create a new one, query and set information

in the in-memory copy of the file, and write the file back out to disk. It is straight forward to open

the file, update a specific feedback item in it, and close it, leaving the other feedback items in the

file unchanged.
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Chapter 3

Runtime System Improvements

Early in the project we tested two manually parallelised programs: a raytracer and a mandelbrot

image generator. Both programs have a single significant loop whose iterations are independent

of one another. We expect that a good automatic parallelisation system will parallelise this loop

as it is the best place to introduce parallelism. When we parallelised this loop manually, we did

not get the speedups that we expected. Therefore, we chose to address the performance problems

before we worked on automatic parallelism. Throughout this chapter we continue to use these

two benchmarks, along with a naive Fibonacci program (Page 85). These benchmarks are not

diverse and they all create a lot of AND-parallelism, most of which is independent. We use these

benchmarks deliberately to test that our runtime system can handle large amounts of parallelism

efficiently.

In this chapter we investigate and correct these performance problems. We start with the

garbage collector in Section 3.1; we analyse the collector’s effects on performance and tune its

parameters to improve performance. In Section 3.2 we describe how the existing runtime system

schedules sparks, and provide background material for Section 3.3, which benchmarks the runtime

system and describes two significant problems with spark scheduling. We address one of these

problems by introducing work stealing in Section 3.4. Then in Section 3.5 we reorder conjuncts in

independent parallel conjunctions to work around the second spark scheduling problem. Finally,

in Section 3.6 we make further improvements to work stealing and change the data structures and

algorithms used to manage idle engines, including how idle engines look for work, sleep and are

woken up.

3.1 Garbage collector tweaks

One of the sources of poor parallel performance is the behaviour of the garbage collector. Like other

pure declarative languages, Mercury does not allow destructive update. Therefore a call usually

returns its results in newly allocated memory rather than modifying the memory of its parameters.

Likewise, a call cannot modify data that may be aliased. This means that Mercury programs often

have a high rate of allocation, which places significant stress on the garbage collector. Therefore,

allocation and garbage collection can reduce a program’s performance as we will show in this

section.

Mercury uses the Boehm-Demers-Weiser conservative garbage collector (Boehm GC) [14], which

is a conservative mark and sweep collector. Boehm GC supports parallel programming: it will

43
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stop all the program’s threads (stop the world) during its marking phase. It also supports parallel

marking: it will use its own set of pthreads to do parallel marking.

For the purposes of this section we separate the program’s execution time into two alternating

phases: Collector time, which is when Boehm GC performs marking, and mutator time, which

is when the Mercury program runs. The name ‘mutator time’ refers to time that mutations

(changes) to memory structures are permitted. The collector may also perform some actions, such

as sweeping, concurrently with the mutator.

Amdahl’s law [4] describes the maximum speedup that can theoretically be achieved by par-

allelising a part of a program. We use Amdahl’s law to predict the speedup of a program whose

mutator is parallelised but whose collector runs sequentially. Consider a program with a runtime

of 20 seconds which can be separated into one second of collector time and 19 seconds of mutator

time. The sequential execution time of the program is 1 + 19 = 20. If we parallelise the mutator

and do not parallelise the collector then the minimum parallel execution time is 1 + 19/P for P

processors. Using four processors the theoretical best speedup is: (1 + 19)/(1 + 19/4) = 3.48.

The fraction of this new execution time (1 + 19/4) spent in the collector (1) is 17% (it was 0.5%

without parallelisation). If we use a machine with 100 processors then the speedup becomes:

(1 + 19)/(1 + 19/100) = 16.8; with 84% of the runtime spent in the collector. As the number

of processors increases, the mutator threads spend a larger proportion of their time waiting for

collection to complete.

Gustafson-Barsis’ law [48] is more appropriate than Amdahl’s law when: there is always more

data than could be processed by additional computation resources (such as in scientific computing),

or when the data can be split into smaller and smaller pieces without affecting the granularity of

parallel tasks. These conditions are often true for large numeric computations; however they are

rarely true for symbolic computations, and Mercury is typically used for symbolic computations.

Therefore we use Amdahl’s law as it is more applicable.

To reduce the amount of time that mutator threads have to wait for the collector, Boehm and

Weiser [14] included parallel marking support in their collector. Ideally this would remove the

bottleneck described above. However, parallel garbage collection is a continuing area of research

and the Boehm GC project has only modest multicore scalability goals. Therefore, we expect

parallel marking to only partially reduce the bottleneck, rather than remove it completely.

Furthermore, thread safety has two significant performance costs; These types of costs prevent

us from achieving the theoretical maximum speedups that Amdahl’s law predicts. The first of

these is that one less CPU register is available to GCC’s code generator when compiling parallel

Mercury programs (Section 2.2). The second is that memory allocation routines must use locking

to protect shared data structures, which slows down allocation. Boehm GC’s authors recognised

this problem and added support for thread-local resources such as free lists. Therefore, during

memory allocation, a thread uses its own free lists rather than locking a global structure. From

time to time, a thread will have to retrieve new free lists from a global structure and will need to

lock the structure, but the costs of locking will be amortised across several memory allocations.

To test how well Mercury and Boehm GC scale to multiple cores we used several benchmark

programs with different memory allocation requirements. We wanted to determine how memory

allocation rates affect performance of parallel programs. Our first benchmark is a raytracer de-

veloped for the ICFP programming contest in the year 2000. For each pixel in the image, the

raytracer casts a ray into the scene to determine what colour to paint that pixel. Two nested loops

build the pixels for the image: the outer loop iterates over the rows in the image and the inner
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GC Markers Sequential Parallel w/ N Mercury Engines
no TS TS 1 2 3 4

raytracer
1 33.1 (1.13) 37.4 (1.00) 37.7 (0.99) 28.0 (1.34) 24.8 (1.51) 23.7 (1.58)
2 - - 32.0 (1.17) 21.6 (1.73) 18.1 (2.07) 16.7 (2.24)
3 - - 29.6 (1.26) 19.7 (1.90) 16.3 (2.29) 14.5 (2.59)
4 - - 29.1 (1.29) 18.9 (1.98) 15.3 (2.45) 13.7 (2.73)

mandelbrot highalloc
1 41.0 (1.23) 50.5 (1.00) 50.6 (1.00) 33.4 (1.51) 26.6 (1.90) 23.4 (2.16)
2 - - 46.7 (1.08) 28.6 (1.77) 22.1 (2.28) 18.8 (2.69)
3 - - 46.3 (1.09) 27.3 (1.85) 20.9 (2.42) 17.3 (2.93)
4 - - 45.6 (1.11) 26.8 (1.89) 20.4 (2.48) 16.7 (3.03)

mandelbrot lowalloc
1 15.4 (0.99) 15.2 (1.00) 15.2 (1.00) 5.1 (2.96) 7.7 (1.98) 3.9 (3.92)
2 - - 15.3 (1.00) 7.7 (1.98) 5.1 (2.97) 3.9 (3.94)
3 - - 14.3 (1.00) 7.7 (1.98) 5.1 (2.97) 3.9 (3.94)
4 - - 15.3 (0.99) 7.7 (1.98) 5.1 (2.97) 3.9 (3.92)

Table 3.1: Parallelism and garbage collection

loop iterates over the pixels in each row. We manually parallelised the program by introducing a

parallel conjunction into the outer loop, indicating that rows should be drawn in parallel. This

parallelisation is independent. The raytracer uses many small structures to represent vectors and

a pixel’s colour. It is therefore memory allocation intensive. Since we suspected that garbage col-

lection in memory allocation intensive programs was having a negative affect on performance, we

developed a mandelbrot image generator. The mandelbrot image generator has a similar structure

to the raytracer, but is designed so that we can test programs with different allocation rates. It

draws an image using two nested loops as above. The mandelbrot image is drawn on the complex

number plane. A complex number C is in the mandelbrot set if ∀i · |Ni| < 2 where N0 = 0 and

Ni+1 = N2
i + C. For each pixel in the image the program tests if the pixel’s coordinates are in

the set. The pixel’s colour is chosen based on how many iterations i are needed before |Ni| ≥ 2,

or black if the test survived 5,000 iterations. We parallelised this program the same way as we

did the raytracer: by introducing an independent parallel conjunction into the outer loop. We

created two versions of this program. The first version represents coordinates and complex num-

bers as structures on the heap. Therefore it has a high rate of memory allocation. We call this

version ‘mandelbrot highalloc’. The second version of the mandelbrot program, called ‘mandel-

brot lowalloc’, stores its coordinates and complex numbers on the stack and in registers. Therefore

it has a lower rate of memory allocation.

We benchmarked these three programs with different numbers of Mercury engines and garbage

collector threads. We show the results in Table 3.1. All benchmarks have an initial heap size

of 16MB. Each result is measured in seconds and represents the mean of eight test runs. The

first column is the number of garbage collector threads used. The second and third columns give

sequential execution times without and with thread safety1 enabled. In these columns the programs

were compiled in such a way so that they did not execute a parallel conjunction. The remaining

four columns give parallel execution times using one to four Mercury engines. The numbers in

1A thread safe build of a Mercury program enables thread safety in the garbage collector and runtime system.
It also requires that one less CPU register is available to Mercury programs (see Section 2.2)
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parentheses show the relative speedup when compared with the sequential thread safe result for

the same program. We ran our benchmarks on a four-core Intel i7-2600K system with 16GB of

memory, running Debian/GNU Linux 6 with a 2.6.32-5-amd64 Linux kernel and GCC 4.4.5-8. We

kept frequency scaling (Speedstep and TurboBoost) disabled. The garbage collection benchmarks

were gathered using a recent version of Mercury (rotd-2012-04-29). This version does not have

the performance problems described in the rest of this chapter, and it does have the loop control

transformation described in Chapter 5. Therefore we can observe the effects of garbage collection

without interference from any other performance problems.

The raytracer program benefits from parallelism in both Mercury and the garbage collector.

Using Mercury’s parallelism only (four Mercury engines, and one GC thread) the program achieves

a speedup of 1.58, compared to 1.29 when using the GC’s parallelism only (one Mercury engine,

and four GC threads). When using both Mercury and the GC’s parallelism (four engines and four

marker threads) it achieves a speedup of 2.73. These speedups are much lower than we might

expect from such a program: either the mutator, the collector or both are not being parallelised

well.

mandelbrot lowalloc does not see any benefit from parallel marking. It achieves very good

speedups from multiple Mercury engines. We know that this program has a low allocation rate

but is otherwise parallelised in the same way as raytracer. Therefore, these results support the

hypothesis that heavy use of garbage collection makes it difficult to achieve good speedups when

parallelising programs. The more time spend in garbage collection, the worse the speedup due to

parallelism.

mandelbrot highalloc, which stores its data on the heap, sees similar trends in performance as

raytracer. It is also universally slower than mandelbrot lowalloc. mandelbrot highalloc achieves a

speedup of 2.16 when using parallelism in Mercury (four Mercury engines, and one GC thread).

The corresponding figure for the raytracer is 1.58. When using the GC’s parallelism (one Mercury

engine, and four GC threads) mandelbrot highalloc achieves a speedup of 1.11, compared with

1.29 for the raytracer.

We can see that mandelbrot highalloc benefits from parallelism in Mercury more than raytracer

does, conversely mandelbrot highalloc benefits from parallelism in the garbage collector less than

raytracer does. Using ThreadScope (Chapter 6), we analysed how much time these programs

spend running the garbage collector or the mutator. These results are shown in Table 3.2. The

table shows the elapsed time, collector time, mutator time and the number of collections for each

program using one to four engines, and one to four collector threads. The times are averages taken

from eight samples, using an initial heap size of 16MB. To use ThreadScope we had to compile the

runtime system differently. Therefore, these results differ slightly from those in Table 3.1. Next

to both the collector time and mutator time we show the percentage of elapsed time taken by the

collector or mutator respectively.

As we expected, mandelbrot lowalloc spends very little time running the collector. Typically,

it runs the collector only twice during its execution. Also, total collector time was usually between

5 and 30 milliseconds. The other two programs ran the collector hundreds of times. As we

increased the number of Mercury engines we noticed that these programs made fewer collections.

As we varied the number of collector threads, we saw no trend in the number of collections. Any

apparent variation is most likely noise in the data. All three programs see a speedup in the time

spent in the mutator as the number of Mercury engines is increased. Similarly, the raytracer

and mandelbrot highalloc benefit from speedups in GC time as the number of GC threads is
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GC Times & Parallel w/ N Mercury Engines
Markers Collections 1 2 3 4

raytracer

1

Elapsed 37.8 28.1 24.7 22.7
GC 16.9 44.8% 16.7 59.4% 16.5 66.6% 15.8 69.5%
Mutator 20.9 55.2% 11.4 40.6% 8.2 33.4% 6.9 30.5%
# col. 384. 346. 316. 288.

2

Elapsed 32.6 21.8 18.3 16.0
GC 11.0 33.8% 10.4 47.7% 10.3 56.4% 9.8 60.8%
Mutator 21.6 66.2% 11.4 52.3& 8.0 43.6% 6.3 39.2%
# col. 384. 346. 316. 288.

3

Elapsed 30.9 20.0 16.4 14.1
GC 9.3 30.2% 8.5 42.3% 8.2 50.0% 7.8 55.4%
Mutator 21.6 69.8% 11.5 57.7% 8.2 50.0% 6.3 44.6%
# col. 386. 346. 316. 288.

4

Elapsed 30.3 19.3 15.5 13.5
GC 8.7 28.8% 7.8 40.4% 7.4 47.8% 7.1 52.4%
Mutator 21.6 71.2% 11.5 59.6% 8.1 52.2% 6.4 47.6%
# col. 387. 346. 316. 288.

mandelbrot highalloc

1

Elapsed 51.7 34.0 27.2 24.0
GC 11.0 21.4% 11.5 33.6% 11.5 42.2% 11.8 49.1%
Mutator 40.7 78.6% 22.6 55.4% 15.5 57.8% 12.2 50.9%
# col. 742. 692. 634. 602.

2

Elapsed 48.5 29.3 22.3 19.1
GC 6.4 13.1% 6.7 22.9% 6.6 29.7% 6.9 36.1%
Mutator 42.1 86.9% 22.6 77.1% 15.7 70.3% 12.2 63.9%
# col. 744. 693. 633. 595.

3

Elapsed 46.4 28.0 21.0 17.7
GC 5.0 10.8% 5.3 18.8% 5.3 25.0% 5.4 30.4%
Mutator 41.4 89.2% 22.8 81.2% 15.7 75.0% 12.3 69.6%
# col. 737. 692. 629. 600.

4

Elapsed 46.0 27.6 20.3 16.9
GC 4.5 9.9% 4.7 17.0% 4.6 22.6% 4.7 27.6%
Mutator 41.4 90.1% 22.9 83.0% 15.7 77.4% 12.3 72.4%
# col. 740. 695. 626. 600.

mandelbrot lowalloc

1

Elapsed 15.2 7.7 5.1 3.9
GC 0.0 0.1% 0.0 0.2% 0.0 0.7% 0.0 0.4%
Mutator 15.2 99.9% 7.6 99.8% 5.1 99.3% 3.9 99.6%
# col. 2. 2. 2. 2.

2

Elapsed 15.4 7.6 5.1 3.9
GC 0.0 0.1% 0.0 0.1% 0.0 0.2% 0.0 0.2%
Mutator 15.4 99.9% 7.6 99.9% 5.1 99.8% 3.9 99.8%
# col. 2. 2. 2. 2.

3

Elapsed 15.3 7.7 5.1 3.9
GC 0.0 0.1% 0.0 0.1% 0.0 0.4% 0.0 0.1%
Mutator 15.2 99.9% 7.7 99.9% 5.1 99.6% 3.9 99.9%
# col 2. 2. 2. 2.

4

Elapsed 15.2 7.6 5.1 3.9
GC 0.0 0.1% 0.0 0.1% 0.0 0.4% 0.0 0.1%
Mutator 15.2 99.9% 7.6 99.9% 5.1 99.6% 3.9 99.9%
# col 2. 2. 2. 2.

Table 3.2: Percentage of elapsed execution time used by GC/Mutator
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Program Allocations Total alloc’d bytes Alloc rate (M alloc/sec)
raytracer 561,431,515 9,972,697,312 26.9
mandelbrot highalloc 3,829,971,662 29,275,209,824 94.1
mandelbrot lowalloc 1,620,928 21,598,088 0.106

Table 3.3: Memory allocation rates

increased. In mandelbrot highalloc, the GC time also increases slightly as Mercury engines are

added. We expect that as more Mercury engines are used the garbage collector must use more

inter-core communication which has additional costs. However, in the raytracer, the GC time

decreases slightly as Mercury engines are added. To understand why this happens we would need

to understand the collector in detail, however Boehm GC’s sources are notoriously difficult to read

and understand.

As Amdahl’s law predicts, parallelism in one part of the program has a limited effect on the

program as a whole. While using one GC thread we tested with one to four Mercury engines;

the mutator time speedups for two, three and four engines were 1.83, 2.55 and 3.03 respectively.

However, the elapsed time speedups for the same test were only 1.35, 1.53 and 1.66 respectively.

Although there is little change in absolute time spent in the collector; there is an increase in

collector time as a percentage of elapsed time. The corresponding mutator time speedups for

mandelbrot highalloc were similar, at 1.80, 2.63 and 3.34 for two, three and four Mercury engines.

The elapsed time speedups on the same test for mandelbrot highalloc were 1.52, 1.90 and 2.15. Like

raytracer above, the elapsed time speedups are lower than the mutator time speedups. Similarly,

when we increase the number of threads used by the collector, it improves collector time more than

it does elapsed time.

When we increased both the number of threads used by the collector and the number of Mercury

engines (a diagonal path through the table) both the collector and mutator time decrease. This

shows that parallelism in Mercury and in Boehm GC both contribute to the elapsed time speedup

we saw in the diagonal path in Table 3.1. As Table 3.2 gives us more detail, we can also see

that collector time as a percentage of elapsed time increases as we add threads and engines to the

collector and Mercury. This occurs for both the raytracer and mandelbrot highalloc. It suggests

that the mutator makes better use of additional Mercury engines than the collector makes use

of additional threads. We can confirm this by comparing the speedup for the mutator with the

speedup in the collector. In the case of raytracer using four Mercury engines and one GC thread the

mutator’s speedup is 20.9/6.9 = 3.03 over the case for one Mercury engine and one GC thread. The

collectors speedup with four GC threads and one Mercury engine over the case for one GC thread

and one Mercury engine is 16.9/8.7 = 1.94. The equivalent speedups for mandelbrot highalloc are:

40.7/12.2 = 3.34 and 11.0/4.5 = 2.44. Similar comparisons can be made along the diagonal of the

table.

Table 3.2 also shows that raytracer spends more of its elapsed time doing garbage collection

than mandelbrot highalloc does. This matches the results in Table 3.1, where mandelbrot highalloc

has better speedups because of parallelism in Mercury than raytracer does. Likewise, raytracer

has better speedups because of parallelism in the collector than mandelbrot highalloc does. This

suggests that mandelbrot highalloc is less allocation intensive than raytracer, but this is not true.

Using Mercury’s deep profiler we measured the number and total size of memory allocations. This

is shown in Table 3.3. The rightmost column in this table gives the allocation rate measured in
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Initial Sequential Parallel w/ N Mercury Engines
heap size no TS TS 1 2 3 4

raytracer
1MB 32.8 (0.89) 29.3 (1.00) 29.3 (1.00) 19.0 (1.54) 15.4 (1.90) 13.6 (2.16)
16MB 33.5 (0.89) 29.7 (1.00) 29.1 (1.02) 18.9 (1.57) 15.3 (1.94) 13.7 (2.17)
32MB 34.3 (0.86) 29.5 (1.00) 29.5 (1.00) 19.5 (1.51) 15.6 (1.89) 13.6 (2.16)
64MB 33.2 (0.92) 30.4 (1.00) 30.7 (0.99) 20.3 (1.50) 16.4 (1.86) 14.5 (2.10)

128MB 22.7 (1.08) 24.5 (1.00) 24.2 (1.01) 15.0 (1.63) 11.7 (2.09) 10.2 (2.40)
256MB 18.8 (1.13) 21.4 (1.00) 21.5 (0.99) 12.6 (1.70) 9.3 (2.29) 7.7 (2.76)
384MB 17.7 (1.17) 20.8 (1.00) 20.7 (1.01) 11.7 (1.77) 8.7 (2.39) 7.2 (2.90)
512MB 17.3 (1.17) 20.3 (1.00) 20.5 (0.99) 11.5 (1.77) 8.3 (2.44) 6.8 (2.99)

mandelbrot highalloc
1MB 41.4 (1.10) 45.5 (1.00) 45.1 (1.01) 26.7 (1.70) 20.3 (2.24) 16.7 (2.72)
16MB 39.7 (1.14) 45.3 (1.00) 45.6 (0.99) 26.8 (1.69) 20.4 (2.23) 16.7 (2.72)
32MB 38.9 (1.16) 45.2 (1.00) 44.2 (1.02) 26.3 (1.72) 19.7 (2.29) 16.5 (2.74)
64MB 36.7 (1.21) 44.4 (1.00) 43.7 (1.02) 25.2 (1.76) 18.8 (2.36) 15.6 (2.84)

128MB 34.1 (1.25) 42.6 (1.00) 41.8 (1.02) 24.1 (1.77) 17.7 (2.41) 14.4 (2.96)
256MB 33.2 (1.24) 41.3 (1.00) 41.9 (0.99) 23.7 (1.74) 16.9 (2.45) 13.6 (3.04)
384MB 31.7 (1.29) 41.0 (1.00) 41.9 (0.98) 23.3 (1.76) 16.7 (2.46) 13.4 (3.07)
512MB 31.1 (1.32) 41.1 (1.00) 41.1 (1.00) 23.0 (1.79) 16.7 (2.46) 13.3 (3.08)

Table 3.4: Varying the initial heapsize in parallel Mercury programs.

millions of allocations per second. It is calculated by dividing the number of allocations in the

second column by the average mutator time reported in Table 3.2. Therefore, it represents the

allocation rate during mutator time. This is deliberate because, by definition, allocation cannot

occur during collector time. mandelbrot highalloc has a higher allocation rate than raytracer.

However, measuring either absolutely or as a percentage of elapsed time, mandelbrot highalloc

spends less time doing collection than the raytracer. Garbage collectors are tuned for particular

workloads. It is likely that Boehm GC handles mandelbrot highalloc’s workload more easily than

raytracer’s workload.

So far, we have shown that speedups due to Mercury’s parallel conjunction are limited by

the garbage collector. Better speedups can be achieved by using the parallel marking feature in

the garbage collector. Now we will show how performance can be improved by modifying the

initial heap size of the program. Table 3.4 shows the performance of the raytracer and mandel-

brot highalloc programs with various initial heap sizes. The first column shows the heap size used;

we picked a number of sizes from 1MB to 512MB. The remaining columns show the average elapsed

times in seconds. The first of these columns shows timing for the programs compiled for sequential

execution without thread safety; this means that the collector cannot use parallel marking. The

next column is for sequential execution with thread safety; the collector uses parallel marking

with four threads. The next four columns give the results for the programs compiled for parallel

execution, and executed with one to four Mercury engines. These results also use four marker

threads. The numbers in parentheses are the ratio of elapsed time compared with the sequential

thread-safe result for the same initial heap size. All the results are the averages of eight test runs.

We ran these tests on raytracer and mandelbrot highalloc. We did not use mandelbrot lowalloc as

its collection time is insignificant and would not have provided useful data.

Generally, the larger the initial heap size the better the programs performed. The Boehm GC

will begin collecting if it cannot satisfy a memory allocation request. If, after a collection, it still
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cannot satisfy the memory request then it will increase the size of the heap. In each collection,

the collector must read all the stacks, global data, thread local data and all the in-use memory

in the heap (memory that is reachable from the stacks, global data and thread local data). This

causes a lot of cache misses, especially when the heap is large. The larger the heap size, the less

frequently memory is exhausted and needs to be collected. Therefore, programs with larger heap

sizes garbage collect less often and have fewer cache misses due to garbage collection. This explains

the trend of increased performance as we increase the initial heap size of the program.

Although performance improved with larger heap sizes, there is an exception. The raytracer

often ran more slowly with a heap size of 64MB than with a heap size of 32MB. 64MB is much

larger than the processor’s cache size (this processor’s L3 cache is 8MB) and covers more page

mappings than its TLBs can hold (the L2 TLB covers 2MB when using 4KB pages). The collector’s

structures and access patterns may be slower at this size because of these hardware limitations, and

the benefits of a 64MB heap are not enough to overcome the effects of these limitations, however

the benefits of a 128MB or larger heap are enough.

Above, we said that programs perform better with larger heap sizes. This measurement com-

pares their elapsed time with one heap size with the elapsed time using a different heap size. We

also found that programs exploited parallelism more easily with larger heap sizes: This measure-

ment compares programs’ speedups (which are themselves comparisons of elapsed time). When

the raytracer uses a 16MB initial heap its speedup using four cores is 2.17 times. However, when

it uses a 512MB initial heap the corresponding speedup is 2.99. Similarly, mandelbrot highalloc

has a 4-engine speedup of 2.72 using a 16MB initial heap and a speedup of 3.08 using a 512MB

initial heap. Generally, larger heap sizes allow programs to exploit more parallelism. There are

two reasons for this

Reason 1 In a parallel program with more than one Mercury engine, each collection must stop-

the-world : all Mercury engines are stopped so that they do not modify the heap during

the marking phase. This requires synchronisation which reduces the performance of parallel

programs. The less frequently collection occurs, the less performance is affected by the

synchronisation of stop-the-world events.

Reason 2 Another reason was suggested by Simon Marlow: Because Boehm GC uses its own

threads for marking and not Mercury’s, it cannot mark objects with the same thread that

allocated the objects. Unless Mercury and Boehm GC both map and pin their threads to

processors, and agree on the mapping, then marking will cause a large number of cache

misses. For example, during collection, processor one (P1) marks one of processor two’s (P2)

objects, causing a cache miss in P1’s cache and invalidating the corresponding cache line

in P2’s cache. Later, when collection finishes, P2’s process resumes execution and incurs a

cache miss for the object that it had been using. Simon Marlow made a similar observation

when working with GHC’s garbage collector.

We also investigated another area for increased parallel performance. Boehm GC maintains

thread local free lists that allow memory to be allocated without contending for locks on the global

free list. When a thread’s local free list cannot satisfy a memory request, the global free list

must be used. The local free lists amortise the costs of locking the global free list. We anticipate

that increasing the size of local free lists will cause even less contention for global locks, allowing

allocation intensive programs to have better parallel performance. We wanted to investigate if
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increasing the size of the local free lists could improve performance. We contacted the Boehm GC

team about this and they advised us to experiment with the HBLKSIZE tunable. They did not say

what this tunable controls. it is undocumented and the source code is very hard to understand.

Our impression is that it only indirectly tunes the sizes of the local free lists. Unfortunately this

feature is experimental: adjusting HBLKSIZE caused our programs to crash intermittently, such

that we could not determine for which values (other than the default) the programs would run

reliably. Therefore we cannot evaluate how HBLKSIZE affects our programs. Once this feature is

no longer experimental, adjusting HBLKSIZE to improve parallel allocation should be investigated.

3.2 Original spark scheduling algorithm

In Sections 2.2 and 2.3, we introduced parallelism in Mercury and described the runtime system

in general terms. In this section we will explain how sparks were originally managed prior to 2009,

when I began my Ph.D. candidature. This will provide the background for the changes we have

made to the runtime system since then.

Mercury (before 2009) uses a global spark queue. The runtime system schedules sparks for

parallel execution by placing them onto the end of the queue. In this chapter we use the word

‘schedule’ to mean the act of making a spark available for parallel or sequential work. An idle

engine runs a spark by taking it from the beginning of the queue. The global spark queue must be

protected by a lock; this prevents concurrent access from corrupting the queue. The global spark

queue and its lock can easily become a bottleneck when many engines contend for access to the

global queue.

Wang [113] anticipated this problem and created context local spark stacks to avoid contention

on the global queue. Furthermore, the local spark stacks do not require locking. When a parallel

conjunction spawns off a spark, it places the spark either at the end of the global spark queue or

at the top of its local spark stack. The runtime system appends the spark to the end of the

global queue if an engine is idle, and the number of contexts in use plus the number of sparks

on the global queue does not exceed the maximum number of contexts permitted. If either part

of the condition is false, the runtime system pushes the spark onto the top of the context’s local

spark stack. This algorithm has two aims. The first is to reduce contention on the global queue,

especially in the common case that there is enough parallel work. The second aim is to reduce

the amount of memory allocated as contexts’ stacks by reducing the number of contexts allocated.

Globally scheduled sparks may be converted into contexts, so they are also included in this limit.

We explain this limit on the number of contexts in more detail in Section 3.3, after covering the

background information in the current section. Note that sparks placed on the global queue are

executed in a first-in-first-out manner; sparks placed on a context’s local stack are executed in a

last-in-first-out manner.

In Section 2.2 we described how parallel conjunctions are compiled (Figure 2.6 shows an ex-

ample). Consider the compiled parallel conjunction in Figure 3.1. The context that executes the

parallel conjunction, let us call it COrig, begins by setting up the sync term, spawning off G2,

and executing G1 (lines 1–4). Then it executes the barrier MR join and continue, shown in Al-

gorithm 3.1. The algorithms throughout this chapter use a macro named MR ENGINE to access the

fields of the structure representing the current engine. Depending on how full the global run queue

is, and how parallel tasks are interleaved, there are three important scenarios:
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1: MR SyncTerm ST;

2: MR init syncterm(&ST, 2);

3: spawn off(&ST, Spawn Label 1);

4: G1

5: MR join and continue(&ST, Cont Label);

6: Spawn Label:

7: G2

8: MR join and continue(&ST, Cont Label);

9: Cont Label:

Figure 3.1: Parallel conjunction implementation

Scenario one:

In this scenario COrig placed the spark for G2 on the top of its local spark stack. Sparks

placed on a context’s local spark stack cannot be executed by any other context. Therefore

when COrig reaches the MR join and continue barrier (line 5 in the example, Figure 3.1),

the context G2 will be outstanding and st->MR st num outstanding will be non-zero. COrig

will execute the else branch on lines 17–42 of MR join and continue, where it will pop the

spark for G2 off the top of the spark stack. It is not possible for some other spark to be

on the top of the stack; any sparks left on the stack by G1 would have been popped off by

the MR join and continue barriers of the conjunctions that spawned off the sparks. This

invariant requires a last-in-first-out storage of sparks, which is why each context uses a stack

rather than a queue. In Section 3.4 we explain in more detail why a last-in-first-out order is

important.

The check that the spark’s stack pointer is equal to the current parent stack pointer2 will

succeed (line 11 of MR join and continue), and the context will execute the spark.

After executing G2, COrig will execute the second call to MR join and continue, the one

on line 8 of the example. This time st->MR st num outstanding will be zero, and COrig

will execute the then branch on lines 7–15 of MR join and continue. In the condition of

the nested if-then-else, COrig will find that the current context is the original context, and

therefore continue execution at line 8. This causes COrig to jump to the continuation label,

line 9 in the example, completing the execution of the parallel conjunction.

Scenario two:

In this scenario COrig placed the spark for G2 on the global spark queue, where another

context, COther, picked it up and executed it in parallel. Also, as distinct from scenario three

below, COther reaches the barrier on line 8 of the example (Figure 3.1) before COrig reaches

the barrier on line 5. Even if they both seem to reach the barrier at the same time, their

barrier operations are performed in sequence because of the lock protecting the barrier code.

When COther executes MR join and continue, It will find that st->MR st num outstanding

is non-zero, and will execute the else branch on lines 17–42 of MR join and continue. It

then attempts to pop a spark off its stack, as in another scenario a spark on the stack might

represent an outstanding conjunction (it cannot tell that the outstanding conjunct is G1

executing in parallel, and not some hypothetical G3). COther took this spark from the global

queue, and was either empty or brand new before executing this spark, meaning that it had

2The code generator will ensure that MR parent sp is set before the parallel conjunction is executed, and that it
is restored after.
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Algorithm 3.1 MR join and continue— original version

1 void MR_join_and_continue(MR_SyncTerm *st, MR_Code *cont_label) {

2 MR_Context *current_context = MR_ENGINE(MR_eng_current_context);

3

4 MR_acquire_lock(&MR_SyncTermLock);

5 st->MR_st_num_outstanding--;

5 if (st->MR_st_num_outstanding == 0) {

6 if (st->MR_st_orig_context == current_context) {

7 MR_release_lock(&MR_SyncTermLock);

9 MR_GOTO(cont_label);

10 } else {

11 st->MR_st_orig_context->MR_ctxt_resume_label = cont_label;

12 MR_schedule(st->MR_st_orig_context);

13 MR_release_lock(&MR_SyncTermLock);

14 MR_GOTO(MR_idle);

15 }

16 } else {

17 MR_Spark spark;

18 MR_bool popped;

19

20 popped = MR_pop_spark(current_context->MR_ctxt_spark_stack, &spark);

21 if (popped && (spark.MR_spark_parent_sp == MR_parent_sp)) {

22 /*

23 ** The spark at the top of the stack is part of the same

24 ** parallel conjunction, we can exuecute it immediately.

25 */

26 MR_release_lock(&MR_SyncTermLock);

27 MR_GOTO(spark.MR_spark_code);

28 } else {

29 if (popped) {

30 /*

31 ** The spark is part of a different parallel conjunction,

32 ** put it back.

33 */

34 MR_push_spark(current_context->MR_ctxt_spark_stack, &spark);

35 }

36 if (st->MR_st_orig_context == current_context) {

37 MR_save_context(current_context)

38 MR_ENGINE(MR_eng_current_context) = NULL;

39 }

40 MR_release_lock(&MR_SyncTermLock);

41 MR_GOTO(MR_idle);

42 }

43 }

44 }
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no sparks on its stack before executing G2. Therefore COther will not have any sparks of its

own and MR pop spark will fail. COther will continue to line 36 in MR join and continue

whose condition will also fail since COther is not the original context (COrig). The lock will be

released and MR join and continue will determine what to do next by jumping to MR idle.

Eventually COrig will execute its call to MR join and continue (line 5 of the example),

or resume execution after waiting on the barrier’s lock (line 4 of MR join and continue),.

When this happens it will find that st->MR st num outstanding is zero, and execute the

then branch beginning at line 7 of MR join and continue. COrig will test if it is the original

context, which it is, and continue on line 8 of MR join and continue. It then jumps to

the continuation label on line 9 of the example, completing the parallel execution of the

conjunction.

Scenario three:

As in scenario two, COrig put the spark for G2 on the global spark queue, where another

context, COther, picked it up and executed it in parallel. However, in this scenario COrig

reaches the barrier on line 5 in the example (Figure 3.1) before COther reaches its barrier on

line 8.

When COrig executes MR join and continue, it finds that st->MR st num outstanding is

non-zero, causing it to execute the else branch on lines 17–42 of MR join and continue.

COrig will try to pop a spark of its local spark stack. However the spark for G2 was placed

on the global spark queue, the only spark it might find is one created by an outer conjunction.

If a spark is found, the spark’s parent stack pointer will not match the current parent stack

pointer, and it will put the spark back on the stack. COrig executes the then branch (lines

37–38 of MR join and continue), since this context is the original context. This branch will

suspend COrig, and set the engine’s context pointer to NULL before jumping to MR idle.

When COther reaches the barrier on line 8, it will find that st->MR st num outstanding is

zero, and will execute the then branch of the if-then-else. Within this branch it will test to

see if it is the original context, the test will fail, and the else branch of the nested if-then-else

will be executed. At this point we know that COrig must be suspended because there were

no outstanding conjuncts and the current context is not the original context; this can only

happen if COrig is suspended. The code wakes COrig up by setting its code pointer to the

continuation label, placing it on the global run queue, and then jumping to MR idle.

When COrig resumes execution it executes the code on line 9, which is the continuation label.

The algorithm includes an optimisation not shown here: if the parallel conjunction has been

executed by only one context, then a version of the algorithm without locking is used. We have

not shown the optimisation because it is equivalent and not relevant to our discussion; we mention

it only for completeness.

When an engine cannot get any local work it must search for global work. Newly created

engines, except for the first, also search for global work. They do this by calling MR idle, whose

code is shown in Algorithm 3.2. Only one of the idle engines can execute MR idle at a time.

MR runqueue lock protects the context run queue and the global spark queue from concurrent

access. After acquiring the lock, engines execute a loop. An engine exits the loop only when it

finds some work to do or the program is exiting. Each iteration first checks if the runtime system

is being shut down, if so, then this thread releases the lock, and then destroys itself. If the system
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Algorithm 3.2 MR idle— original version

void MR_idle() {

MR_Context *ctxt;

MR_Spark *spark;

MR_acquire_lock(&MR_runqueue_lock);

while(MR_True) {

if (MR_exit_now) {

MR_release_lock(MR_runqueue_lock);

MR_destroy_thread(); // does not return.

}

// Try to run a context

ctxt = MR_get_runnable_context();

if (ctxt != NULL) {

MR_release_lock(&MR_runqueue_lock);

if (MR_ENGINE(MR_eng_current_context) != NULL) {

MR_release_context(MR_ENGINE(MR_eng_current_context));

}

MR_load_context(ctxt);

MR_GOTO(ctxt->MR_ctxt_resume);

}

// Try to run a spark.

spark = MR_dequeue_spark(MR_global_spark_queue);

if (spark != NULL) {

MR_release_lock(&MR_runqueue_lock);

if (MR_ENGINE(MR_eng_current_context) == NULL) {

ctxt = MR_get_free_context();

if (ctxt == NULL) {

ctxt = MR_create_context();

}

MR_load_context(ctxt);

}

MR_parent_sp = spark->MR_spark_parent_sp;

ctxt->MR_ctxt_thread_local_mutables =

spark->MR_spark_thread_local_mutables;

MR_GOTO(spark->MR_spark_code);

}

MR_wait(&MR_runqueue_cond, &MR_runqueue_lock);

}

}
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map( , [], []).

map(P, [X | Xs], [Y | Ys]) :-

P(X, Y) &

map(P, Xs, Ys).

(a) Right recursive

map( , [], []).

map(P, [X | Xs], [Y | Ys]) :-

map(P, Xs, Ys) &

P(X, Y).

(b) Left recursive

Figure 3.2: Right and left recursive map/3

is not being shut down, the engine will search for a runnable context. If it finds a context, it

releases the run queue lock, loads the context and jumps to the resume point for the context. If

it already had a context, then it first releases that context; doing so is safe because MR idle has

a precondition that if an engine has a context, the context must not contain a spark or represent

a suspended computation. If no context was found, the engine attempts to take a spark from the

global spark queue. If it finds a spark then it will need a context to execute that spark. It will

try to get a context from the free list; if there is none it will create a new context. Once it has

a context, it copies the context’s copies of registers into the engine. It also initialises the engine’s

parent stack pointer register and the spark’s thread local mutables (which are set by the context

that created the spark) into the context. If the engine does not find any work, it will wait using

a condition variable and the run queue lock. The pthread wait function is able to unlock the lock

and wait on the condition variable atomically, preventing race conditions. The condition variable

is used to wake up the engine if either a spark is placed on the global spark queue or a context is

placed on the context run queue. When the engine wakes, it will re-execute the loop.

3.3 Original spark scheduling performance

In Section 3.1 we ran our benchmarks with a recent version of the runtime system. In the rest of

this chapter we describe many of the improvements to the runtime system that led to the improved

parallel performance reported in that section.

Figure 3.2 shows two alternative, parallel implementations of map/3. While their declarative

semantics are identical, their operational semantics are very different. In Section 2.2 we explained

that parallel conjunctions are implemented by spawning off the second and later conjuncts and

executing the first conjunct directly. In the right recursive case (Figure 3.2(a)), the recursive

call is spawned off as a spark, and in the left recursive case (Figure 3.2(b)), the recursive call is

executed directly, and the loop body is spawned off. Declarative programmers are taught to prefer

tail recursion, and therefore tend to write right recursive code.

Table 3.5 shows average elapsed time in seconds for the mandelbrot lowalloc program from 20

test runs. We described this program above in Section 3.1. Using this program we can easily

observe the speedup due to parallelism in Mercury without the effects of the garbage collector.

The main loop of the renderer uses right recursion, and is similar to map/3 (Figure 3.2(a)). This is

the loop that iterates over the image’s rows. The leftmost column of the table shows the maximum

number of contexts that may exist at any time. This is the limit that was introduced in the

previous section. The next two columns give the elapsed execution time for a sequential version of

the program, that is, the program compiled without the use of the parallel conjunction operator.

These two columns give results without and with thread safety. The following four columns give
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Max no. Sequmential Parallel w/ N Engines
of contexts not TS TS 1 2 3 4

4 23.2 (0.93) 21.5 (1.00) 21.5 (1.00) 21.5 (1.00) 21.5 (1.00) 21.5 (1.00)
64 - - 21.5 (1.00) 21.5 (1.00) 21.5 (1.00) 21.5 (1.00)
128 - - 21.5 (1.00) 19.8 (1.09) 20.9 (1.03) 21.2 (1.01)
256 - - 21.5 (1.00) 13.2 (1.63) 15.5 (1.38) 16.5 (1.30)
512 - - 21.5 (1.00) 11.9 (1.81) 8.1 (2.66) 6.1 (3.55)

1024 - - 21.5 (1.00) 11.8 (1.81) 8.0 (2.67) 6.1 (3.55)
2048 - - 21.5 (1.00) 11.9 (1.81) 8.0 (2.67) 6.0 (3.55)

Table 3.5: Right recursion performance.

the elapsed execution times using one to four Mercury engines. Each value in the table is a mean

of 20 test runs. The numbers in parentheses are the ratio between the mean time and the mean

sequential thread safe time.

In general we achieve more parallelism when we use more contexts, up to a threshold of 601

contexts. The threshold is at this point because there are 600 rows in the image meaning 600

iterations of the loop plus 1 for the base case. Each iteration may consume a context. This is

why the program does not benefit greatly from a high limit such as 1024 or 2048 contexts. When

a spark is executed in its parent context (two iterations execute sequentially) then the program

may use fewer than 600 contexts. This is possibly why a limit of 512 contexts also results in a

good parallel speedup. When only 256 contexts are used, the four core version achieves a speedup

of 1.30, compared to 3.55 for 512 or more contexts. Given that mandelbrot uses independent

parallelism, ideally there should never be any need to suspend a context. Therefore the program

should parallelise well enough when restricted to a small number of contexts (four to eight). Too

many contexts are needed to execute this program at the level of parallelism that we want. We

noticed the same pattern in other programs with right recursive parallelism.

To understand this problem, we must consider how parallel conjunctions are executed (see

Section 2.2). We will step through the execution of map/3 from Figure 3.2(a). The original context

creates a spark for the second and later conjuncts and puts it on the global spark queue. It then

executes the first conjunct P/2. This takes much less time to execute than the spawned off call

to map/3. After executing P/2 the original context will call the MR join and continue barrier. It

then attempts to execute a spark from its local spark stack, which will fail because the only spark

was placed on the global spark queue. The original context cannot proceed until after the other

context finishes, but it will be needed then and must then be kept in memory until then. Therefore

it is suspended until all the other 599 iterations of the loop have finished. Meanwhile the spark that

was placed on the global run queue is converted into a new context. This new context enters the

recursive call and becomes blocked within the recursive instance of the same parallel conjunction;

it must wait for the remaining 598 iterations of the loop. This process continues to repeat itself,

allocating more contexts. Each context consumes a significant amount of memory, much more than

one stack frame. Therefore this problem makes programs that look tail recursive consume much

more memory than sequential programs that are not tail recursive. We implement the limit on the

number of contexts to prevent pathological cases such as this one from crashing the program or

the whole computer. Once the limit is reached sparks cannot be placed on the global run queue

and sequential execution is used. Therefore the context limit is a trade off between memory usage

and parallelism.
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Time

Number of Contexts

Figure 3.3: Linear context usage in right recursion

An example of context usage over time using four engines is shown in Figure 3.3. Time is shown

on the Y axis and contexts are drawn so that each additional context is further along the X axis.

At the top left, four contexts are created and they execute four iterations of a loop; this execution

is indicated by boxes. Once each of these iterations finishes, its context stays in memory but is

suspended, indicated by the long vertical lines. Another four iterations of the loop create another

four contexts, and so on. Later, when all iterations of the loop have been executed, each of the

blocked contexts resumes execution and immediately exits, indicated by the horizontal line at the

bottom of each of the vertical lines. Later in the project we developed a solution to this problem

(see Chapter 5). Before developing the solution, we developed a work around (see Section 3.5.

When using either 128 or 256 contexts, we noticed that when we used three or four Mercury

engines the program ran more slowly than with two Mercury engines. A possible reason is that:

the more Mercury engines there are, the more often at least one engine is idle. When creating a

spark, the runtime system checks for an idle engine, if there is one then the spark may be placed

on the global queue, subject to the context limit (see Section 3.2). If there is no idle engine, a

spark is placed on the context’s local queue regardless of the current number of contexts. When

there are fewer Mercury engines being used then it is less likely that one of them is idle. Therefore

more sparks are placed on the local queue and executed sequentially and the program does not hit

the context limit as quickly as one using more Mercury engines. The program can exploit more

parallelism as it hits the context limit later, and achieves better speedups.

Only right recursion uses one context for each iteration of a loop. A left recursive predicate

(Figure 3.2(b)) has its recursive call on the left of the parallel conjunction. The context executing

the conjunction sparks off the body of the loop (in the figure this is P), and executes the recursive

call directly. By the time the recursive call finishes, the conjunct containing P should have also

finished. The context that created the parallel conjunction is less likely to be blocked at the

barrier, and the context executing the spark is never blocked since it is not the original context

that executed the conjunction.

Table 3.6 shows benchmark results using left recursion. The table is broken into three sections:

1. a copy of the right recursion data from Table 3.5, which is presented again for comparison;

2. the left recursion data, which we will discuss now;

3. and left recursion data with a modified context limit, which we will discuss in a moment.

The figures in parenthesis are the standard deviation of the samples.
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Max no. Sequmential Parallel w/ N Engines
of contexts not TS TS 1 2 3 4

Right recursion
4 23.2 (0.00) 21.5 (0.04) 21.5 (0.02) 21.5 (0.00) 21.5 (0.01) 21.5 (0.02)

64 - - 21.5 (0.03) 21.5 (0.01) 21.5 (0.01) 21.5 (0.02)
128 - - 21.5 (0.02) 19.8 (0.01) 20.9 (0.03) 21.2 (0.03)
256 - - 21.5 (0.02) 13.2 (0.05) 15.5 (0.06) 16.5 (0.07)
512 - - 21.5 (0.02) 11.9 (0.11) 8.1 (0.09) 6.1 (0.08)

1024 - - 21.5 (0.03) 11.8 (0.11) 8.0 (0.06) 6.1 (0.08)
2048 - - 21.5 (0.03) 11.9 (0.10) 8.0 (0.08) 6.0 (0.06)

Left recursion (Sparks included in context limit)
4 23.2 (0.01) 21.5 (0.03) 21.5 (0.02) 21.5 (0.04) 21.5 (0.04) 21.5 (0.02)

64 - - 21.5 (0.02) 21.5 (0.02) 21.4 (0.03) 21.5 (0.03)
128 - - 21.5 (0.04) 21.5 (0.03) 21.5 (0.03) 21.5 (0.03)
256 - - 21.5 (0.02) 18.3 (0.75) 18.2 (0.03) 19.6 (1.37)
512 - - 21.5 (0.02) 17.9 (0.83) 15.5 (1.29) 16.4 (7.09)

1024 - - 21.5 (0.03) 18.0 (0.85) 14.7 (2.18) 16.1 (5.23)
2048 - - 21.5 (0.02) 18.0 (0.85) 15.4 (2.15) 17.8 (5.25)

Left recursion (Sparks excluded from context limit)
N/A 23.3 (0.01) 21.5 (0.02) 21.7 (0.78) 17.9 (0.60) 15.6 (2.49) 14.2 (6.94)

Table 3.6: Right and Left recursion shown with standard deviation

The left recursive figures are underwhelming; they are worse than right recursion. Furthermore,

the standard deviations for left recursion results are much higher. In particular, the more contexts

and Mercury engines are used, the higher the standard deviation. Despite this, we can see that

the left recursion results are much slower than the right recursive results.

Both left and right recursion are affected by the context limit, however the cause for left

recursion is different. Consider a case of two Mercury engines and a context limit of eight. The

first Mercury engine is executing the original context, which enters the left recursive parallel

conjunction and spawns off a spark, adding it to the global spark queue. The original context then

executes the recursive call and continues to spawn off sparks. As we described in Section 3.2, each

spark on the global spark queue may be converted into a new context, and therefore sparks on the

global queue contribute towards the context limit. With left recursion, the first engine executes

its tight loop which spawns off sparks. Meanwhile the second engine takes sparks from the queue

and executes them; the execution of the work that a spark represents takes more time than each

recursive call executed by the first engine. Therefore the first engine will put sparks on the global

queue more quickly than the second engine can remove and execute them. After eight to twelve

recursions, it is very likely that the sparks on the global queue will exceed the context limit, and

that new sparks are now placed on the original context’s local spark stack. This happens sooner if

the context limit is low.

The high variance in all the left recursive results is indicative of nondeterminism. The cause is

going to be something that either varies between execution runs or does not always effect execution

runs. A potential explanation is that in different runs, different numbers of sparks are executed in

parallel before the context limit is reached. However this cannot be true, or at least is only partly

true, as the variance is higher when the context limit is higher, including cases where 2048 contexts

are permitted and we know the program needs at most 601 (usually less). Fortunately there is

a better explanation. The context limit is one of the two things used to make this scheduling
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decision; the other is: if there is no idle engine then the spark is always placed on the context

local spark stack (Section 3.2). At the time when the parallel conjunction in map/3 is executed,

the other engines will initially be idle but will quickly become busy, and once they are busy the

original context will not place sparks on the global spark queue. If the other engines are slow to

respond to the first sparks placed on the global queue, then more sparks are placed on this queue

and more parallel work is available. If they are quick to respond, then more sparks will be placed

on the original contexts local queue, where they will be executed sequentially.

Mandelbrot uses only independent parallelism, which means no context can ever be blocked by

a future. In a left recursive case, a computation that is spawned off on a spark is never blocked

by a MR join and continue barrier; only the original context executes a MR join and continue

that may block. Therefore the program never uses more than one context per Mercury engine

plus the original context. For this program we can safely modify the runtime system so that

globally scheduled sparks do not count towards the context limit. We did test that a low context

limit prevents the majority of sparks from being placed on the global queue and being eligible for

parallel execution. The final row group in Table 3.6 shows results for the left recursive test where

sparks in the global queue do not count towards the context limit. As expected, we got similar

results for different values of the context limit. We have therefore shown only one row of results

in the table. This result is similar to those in the left recursive group with an unmodified runtime

system and a sufficiently high context limit. Therefore we can say that the context limit is affecting

left recursion in this way.

Both of the problems involving left recursion have the same cause: the decision to execute

a spark sequentially or in parallel is made too early. This decision is made when the spark is

scheduled, and placed either on the global spark queue or the context local spark stack. The data

used to make the decision includes the number of contexts in use, the number of sparks on the

global queue, and if there is an idle engine. These conditions will be different when the spark is

scheduled compared to when it may be executed, and the conditions when it is scheduled are not

a good indication of the conditions when it may be executed. We will refer to this problem as the

premature spark scheduling problem. In the next section, we solve this problem by delaying the

decision whether to execute a spark in parallel or in sequence.

3.4 Initial work stealing implementation

Work stealing addresses the premature spark scheduling problem that we described in the previous

section. Wang [113] recognised this problem and proposed work stealing as its solution. In a work

stealing system, sparks placed on a context’s local spark stack are not committed to running in

that context; they may be executed in a different context if they are stolen (we describe below

why we use a stack to store sparks). This delays the decision of where to execute a spark until the

moment before it is executed.

Work stealing is a popular method for managing parallel work in a shared memory multipro-

cessor system. Multilisp (Halstead [50]) was one of the first systems to use work stealing, which

Halstead calls “an unfair scheduling policy”. The term “unfair” is not an expression of the morals

of stealing (work), instead it refers to the unfairness of cooperative multitasking when compared

to something like round-robin scheduling. Each processor in Multilisp has a currently running

task, and a stack of suspended tasks. If the current task is suspended on a future or finishes, the
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p(...) :-

(

q(Y::out, ...)

&

r(Y::in, ...)

&

s(...)

).

q(Y::out, ...) :-

(

t(X::out, ...)

&

u(X::in, Y::out)

).

(a) Nested parallel conjunctions

· · ·

(b) Step 1

· · ·

r & s

(c) Step 2

· · ·

r & s

u

(d) Step 3

· · ·

r & s

(e) Step 4

· · ·

s

(f) Step 5

· · ·

(g) Step 6

Figure 3.4: Spark execution order

processor will execute the task at the top of its task stack. If there is no such task, it attempts to

steal a task from the bottom of another processor’s stack.

Halstead’s “unfair scheduling” is motivated by his need to reduce the problems of embarrassing

parallelism. Most significantly, he says that the system can deadlock due to running out of resources

but needing resources to proceed. We would like to point out that this is not the same as our right

recursion problem, even though the two have similar symptoms. Furthermore, work stealing does

not fix the right recursion problem.

Work stealing’s other benefits can be summarised as follows.

• It is quicker to schedule sparks because a context can place sparks on its local spark stack

more quickly than it can place sparks on the global spark queue. This is because there is less

contention on a context’s local spark stack. The only source of contention is work stealing,

which is balanced among all of the contexts. Assume each of the C contexts’ spark stacks

contains sparks. Contention on any one of these stacks is 1/C times less than it would be on

a global queue.

• An idle worker can take work from its own queue quickly. Again, there is less contention on

a local queue.

• In ideal circumstances, an idle worker rarely needs to steal work from another’s queue.

Stealing work is more costly as it requires communication between processors.

Mercury’s initial work stealing implementation was built jointly by Peter Wang and myself,

Wang contributed about 80% of the work and I contributed the remaining 20%. Wang’s honours

thesis [113] describes his proposal on which our implementation is heavily based.

Until now, each context has used a stack to manage sparks. The last item pushed onto the

stack is the first to be popped off the stack. This last-in-first-out order is important for Mercury’s

parallel conjunctions. Parallel conjunctions may be nested, either in the same procedure or through

procedure calls such as in Figure 3.4(a). Consider a context whose spark stack’s contents are
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initially undefined. The spark stack is represented by Figure 3.4(b). When the context calls p it

creates a spark for the second and third conjuncts r(...) & q(...) and places the spark on its

local stack (Figure 3.4(c)). It then calls q, where it creates another spark. This spark represents

the call to u, and now the spark stack looks like Figure 3.4(d). Assuming that no work stealing

has occurred, when the context finishes executing t it pops the spark from the top of its stack; the

popped spark represents the call to u because the stack returns items in a last-in-first-out order.

This is desirable because it follows the same execution order as sequential execution would. We

call this left-to-right execution since by default the left operand of a conjunction is executed first.

The conjunction in q contains a shared variable named X; this execution order ensures that the

future signal/2 operation for X’s future occurs before the future wait/2 operation; the context

is not blocked by the call to future wait/2. (Note that the mode annotations are illustrative,

they are not part of Mercury’s syntax.) Once the spark for u is popped off the spark stack then

the spark stack looks like Figure 3.4(e). After the execution of u, q returns control to p, which

then continues the execution of its own parallel conjunction. p pops a spark off the spark stack;

the spark popped off is the parallel conjunction r(...) & s(...). This immediately creates a

spark for s and pushes it onto the spark stack (Figure 3.4(f)) and then executes r. The execution

of r at this point is also the same as what would occur if sequential conjunctions were used. This is

straightforward because the spark represented the rest of the parallel conjunction. Finally r returns

and p pops the spark for s off of the spark stack and executes it. At this point the context’s spark

stack looks like Figure 3.4(g).

If at step 3, the context executed the spark for r(...) & s(...) then r would have blocked

on the future for Y. This would have used more contexts than necessary and more overheads

than necessary. It may have also caused a deadlock: since stealing a spark may create a context

which may not be permitted due to the context limit. Furthermore the original context would not

be able to continue the execution in p without special stack handling routines; this would make

the implementation more complicated than necessary. Therefore from a context’s perspective its

local spark storage must behave like a stack. Keeping this sequential execution order for parallel

conjunctions has an additional benefit: it ensures that a popped spark’s data has a good chance

of being hot in the processor’s cache.

Prior to work stealing, context local spark stacks returned sparks in last-in-first-out order, the

global spark queue returns sparks in first-in-first-out order. This does not encourage a left-to-right

execution order, however Wang [113] proposes that this order may be better:

The global spark queue, however, is a queue because we assume that a spark generated

earlier will have greater amounts of work underneath it than the latest generated spark,

and hence is a better candidate for parallel execution.

If we translate this execution order into the work stealing system, it means that work is stolen

from the bottom end of a context’s local spark stack. Consider step 3 of the example above. If

a thief removes the spark for r & s then only the spark for u is on the stack, and the original

context can continue its execution by taking the spark to u. By comparison if the spark for u was

stolen, it would force the original context to try to execute r & s which, for the reasons above,

is less optimal. Therefore a thief steals work from the bottom of a context local stack so that a

first-in-first-out order is used for parallel tasks.

Halstead [50] also uses processor-local task stacks, so that when a processor executes a task

from its own stack, a last-in-first-out order is used. He chose to have thieves steal work from
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the top of a task stack so that a thief also executes work in the last-in-first-out order. However,

Halstead remarks that it may be better to steal work from the bottom of a stack. Halstead chose

a last-in-first-out execution order for the same reasons that we did: so that when a processor runs

its own task, the task is executed in the same order as it would be if the program were running

sequentially. We agree with his claim that this reduces resource usage overheads. We also agree

with his speculation that it results in more efficient cache usage. However, Halstead also claims

that this can improve performance for embarrassingly parallel workloads. This claim is only true

insofar as work stealing reduces runtime costs in general. No runtime method can completely

eliminate the overheads of parallel execution. Furthermore, in our experience, using sparks to

represent computations whose execution has not begun has had a more significant improvement in

reducing runtime costs.

To preserve the last-in-first-out behaviour of context-local spark stacks, and first-in-first-out

behaviour of the global queue, we chose to use double ended queues (deques) for context local

spark storage. Since the deque will be used by multiple Mercury engines we must either choose a

data structure that is thread safe or use a mutex to protect a non thread safe data structure. The

pop and push operations are always made by the same thread,3 therefore the stealing of work by

another context is what creates the need for synchronisation. The deque described by Chase and

Lev [28] supports lock free, nonblocking operation, has low overheads (especially for pop and push

operations), and is dynamically resizable; all of these qualities are very important to our runtime

system’s implementation. The deque provides the following operations.

void MR push spark(deque *d, spark *s) The deque’s owner can call this to push an item

onto the top4 or hot end of the deque. This can be done with only a memory barrier for

synchronisation (see below). If necessary, MR push spark() will grow the array that is used

to implement the deque.

MR bool MR pop spark(deque *d, spark *s) The deque’s owner can call this to pop an item

from the top of the queue. In the case that the deque contains only one item, a compare and

swap operation is used to determine if the thread lost a race to another thread attempting

to steal the item from the deque (a thief ). When this happens, the single item was stolen

by the thief and the owner’s call to MR pop spark() returns false, indicating that the deque

was empty. In the common case the compare and swap is not used. In all cases a memory

barrier is also used (see below). Internally the deque is stored as an array of sparks, not

spark pointers. This is why the second argument, in which the result is returned, is not a

double pointer as one might expect. This implementation detail avoids memory allocation

for sparks inside the deque implementation. A caller of any of these functions temporarily

stores the spark on its program stack.

MR ws result MR steal spark(deque *d, spark *s) A thread other than the deque’s owner

can steal items from the bottom of the deque. This always uses an atomic compare and

swap operation as multiple thieves may call MR steal spark() on the same deque at the

same time. MR steal spark() can return one of three different values: “success”, “failure”

3Contexts move between engines by being suspended and resumed, but this always involves the context run
queue’s lock or other protection. Therefore the context’s data structures including the spark deque are protected
from concurrent access.

4Note when we refer to the top of the deque Chase and Lev [28] refers to the bottom and vice-versa. Most people
prefer to imagine that stacks grow upwards, and since the deque is most often used as a stack we consider this end
of the deque to be the top. We also call this the hot end as it is the busiest end of the deque.



64 CHAPTER 3. RUNTIME SYSTEM IMPROVEMENTS

Algorithm 3.3 MR push spark() with memory barrier

void MR_push_spark(MR_SparkDeque *dq, const MR_Spark *spark)

{

int bot;

int top;

volatile MR_SparkArray *arr;

int size;

bot = dq->MR_sd_bottom;

top = dq->MR_sd_top;

arr = dq->MR_sd_active_array;

size = top - bot;

if (size >= arr->MR_sa_max) {

/* grow array omitted */

}

MR_sa_element(arr, top) = *spark;

/*

** Make sure the spark data is stored before we store the value of

** bottom.

*/

__asm__ __volatile__ ("sfence");

dq->MR_sd_top = top + 1;

}

and “abort”. “abort” indicates that the thief lost a race with either the owner (victim) or

another thief.

Mercury was already using Chase and Lev [28]’s deques for spark storage, most likely because

Wang had always planned to implement work stealing. We did not need to replace the data

structure used for a context local spark storage, but we will now refer to it as a deque rather than

a stack. We have removed the global spark queue, as work stealing does not use one. Consequently,

when a context creates a spark, that spark is always placed on the context’s local spark deque.

Chase and Lev [28]’s paper uses Java to describe the deque structure and algorithms. Java

has a strong memory model compared to C (the implementation language of the Mercury runtime

system). C’s volatile variable storage keyword prevents the compiler from reordering operations

on that variable with respect to other code and prevents generated code from caching the value

of the variable. CPUs will generally reorder memory operations including executing several op-

erations concurrently with one another and other instructions. Therefore, C’s volatile keyword

is insufficient when the order of memory operations is important. In contrast, Java’s volatile

keyword has the constraints of C’s keyword plus it guarantees that memory operations become

visible to other processors in the order that they appear in the program. Chase and Lev [28] use

Java’s volatile qualifier in the declaration for the top and bottom fields of the deque structure.

When adding the deque algorithms to Mercury’s runtime system, we translated them to C. To

maintain correctness we had to introduce two memory barriers,5 CPU instructions which place or-

dering constraints on memory operations. First, we placed a store barrier in the MR push spark()

5Memory barriers are also known as memory fences. In particular the x86/x86 64 instructions contain the word
fence.
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Algorithm 3.4 MR pop spark() with memory barrier

volatile MR_Spark* MR_pop_spark(MR_SparkDeque *dq)

{

int bot;

int top;

int size;

volatile MR_SparkArray *arr;

bool success;

volatile MR_Spark *spark;

top = dq->MR_sd_top;

arr = dq->MR_sd_active_array;

top--;

dq->MR_sd_top = top;

/* top must be written before we read bottom. */

__asm__ __volatile__ ("mfence");

bot = dq->MR_sd_bottom;

size = top - bot;

if (size < 0) {

dq->MR_sd_top = bot;

return NULL;

}

spark = &MR_sa_element(arr, top);

if (size > 0) {

return spark;

}

/* size = 0 */

success = MR_compare_and_swap_int(&dq->MR_sd_bottom, bot, bot + 1);

dq->MR_sd_top = bot + 1;

return success ? spark : NULL;

}

procedure (the inline assembly6 in Algorithm 3.3). This barrier ensures that the spark is written

into the array before the pointer to the top of the array is updated, indicating that the spark is

available. Second, we placed a full barrier in the MR pop spark() procedure (the inline assembly

in Algorithm 3.4). This barrier requires that the procedure updates the pointer to the top of the

deque before it reads the pointer to the bottom (which it uses to calculate the size). This barrier

prevents a race between an owner popping a spark and two thieves stealing sparks. It ensures that

each of the threads sees the correct number of items on the deque and therefore executes correctly.

Both these barriers have a significant cost, in particular the full barrier in MR pop spark(). This

means that the MR push spark() and MR pop spark() functions are not as efficient as they appear

to be. The deque algorithms are still efficient enough; we have not needed to improve them further.

6In our implementation a C macro is used to abstract away the assembly code for different architectures; we
have shown our figures without the macro to aid the reader.
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Algorithm 3.5 MR join and continue— initial work stealing version

1 void MR_join_and_continue(MR_SyncTerm *st, MR_Code *cont_label) {

2 MR_bool finished, got_spark;

3 MR_Context *current_context = MR_ENGINE(MR_eng_current_context);

4 MR_Context *orig_context = st->MR_st_orig_context;

5 MR_Spark spark;

6

7 finished = MR_atomic_dec_and_is_zero(&(st->MR_st_num_outstanding));

8 if (finished) {

9 if (orig_context == current_context) {

10 MR_GOTO(cont_label)

11 } else {

12 while (orig_context->MR_ctxt_resume != cont_label) {

13 CPU_spin_loop_hint();

14 }

15 MR_schedule_context(orig_context);

16 MR_GOTO{MR_idle};

17 }

18 } else {

19 got_spark = MR_pop_spark(current_context->MR_ctxt_spark_deque, &spark);

20 if (got_spark) {

21 MR_GOTO(spark.MR_spark_code);

22 } else {

23 if (orig_context == current_context) {

24 MR_save_context(current_context);

25 current_context->MR_ctxt_resume = cont_label;

26 MR_ENGINE(MR_eng_current_context) = NULL;

27 }

28 MR_GOTO(MR_idle);

29 }

30 }

31 }

For more information about C’s weak memory ordering see Boehm [15]. See also Adve and Boehm

[2] which discusses the Java memory model and the new C++0x7 memory model.

A context accesses its own local spark queue in the MR join and continue barrier introduced in

Section 3.2. The introduction of work stealing has allowed us to optimise MR join and continue.

The new version of MR join and continue is shown in Algorithm 3.5, and the previous version is

shown in Algorithm 3.1 on page 53. The first change to this algorithm is that this version is lock

free. All the synchronisation is performed by atomic CPU instructions, memory write ordering and

one spin loop. The number of outstanding contexts in the synchronisation term is decremented

and the result is checked for zero atomically.8 This optimisation could have been made without

introducing work stealing, but it was convenient to make both changes at the same time. Note

that in the previous version, a single lock was shared between all of the synchronisation terms in

the system.

The next change prevents a race condition that would otherwise be possible without locking,

which could occur as follows. A conjunction of two conjuncts is executed in parallel. The original

context, COrig, enters the barrier, decrements the counter from two to one, and because there is

7C++0x is also known as C++11
8On x86/x86 64 this is a lock dec instruction. We read the zero flag to determine if the decrement caused the

value to become zero.
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another outstanding conjunct, it executes the else branch on lines 19–29. At almost the same time

another context, COther, enters the barrier, decrements the counter and finds that there is no more

outstanding work. COther attempts to schedule COrig on line 15. However attempting to schedule

COrig before it has finished suspending would cause an inconsistent state and memory corruption.

Therefore lines 12–14 wait until COrig has been suspended. The engine that is executing COrig

first suspends COrig and then indicates that it has been suspended by setting COrig’s resume label

(lines 24–25). The spin loop on lines 12–14 includes a use of a macro named CPU spin loop hint,

This resolves to the pause instruction on x86 and x86 64, which instructs the CPU to pipeline the

loop differently in order to reduce memory traffic and allow the loop to exit without a pipeline

stall [62]. Lines 24–25 also include memory write ordering (not shown).

The other change is around line 20: when the context pops a spark off its stack, it does not

check if the spark was created by a callee’s parallel conjunction. This check can be avoided because

all sparks are placed on the context local spark deques and thieves never steal work from the hot

end of the deque. Hence if there is an outstanding conjunct then either its spark will be at the hot

end of the deque or the deque will be empty and the spark will have been stolen. Therefore any

spark at the hot end of the deque cannot possibly be created by a callee’s parallel conjunction.

We have also modified MR idle to use spark stealing; its new code is shown in Algorithm 3.6.

We have replaced the old code which dequeued a spark from the global spark queue with a call to

MR try steal spark() (see below). Before attempting to steal a spark, MR idle must ensure that

the context limit will not be exceeded (this was previously done when choosing where to place a

new spark). This check is on lines 28–29; it is true if either the engine already has a context (which

is guaranteed to be available for a new spark), or the current number of contexts is lower than the

limit. When sparks are placed on a context’s local deque, the run queue’s condition variable is not

signalled, as doing so would be wasteful. Therefore engines must wake up periodically to check if

there is any parallel work available. This is done on line 48 using a call to MR timed wait with a

configurable timeout (it defaults to 2ms). We discuss this timeout later in Section 3.6.

Engines that attempt to steal a spark must have access to all the spark deques. We do this

with a global array of pointers to contexts’ deques. When a context is created, the runtime system

attempts to add the context’s deque to this array by finding an empty slot, one containing a null

pointer, and writing the pointer to the context’s deque to that index in the array. If there is

no unused slot in this array, the runtime system will resize the array. When the runtime system

destroys a context, it writes NULL to that context’s index in the deque array. To prevent concurrent

access from corrupting the array, these operations are protected by MR spark deques lock.

The algorithm for MR try steal spark() is shown in Algorithm 3.7. It must also acquire the

lock before using the array. A thief may need to make several attempts before it successfully finds a

deque with work it can steal. Line 6 sets the number of attempts to make, which is either the user

configurable MR worksteal max attempts or the size of the array, whichever is smaller. A loop

(beginning on line 7) attempts to steal work until it succeeds or it has made max attempts. We

use a global variable, MR victim counter, to implement round-robin selection of the victim. On

line 11 we attempt to steal work from a deque, provided that its deque pointer in the array is non-

null. If the call to MR steal spark() succeeded, it will have written spark data into the memory

pointed to by spark, then MR try steal spark() releases the lock and returns true. Eventually

MR try steal spark() may give up (lines 17–18). If it does so it will release the lock and return

false. Whether or not a thief steals work or gives up, the next thief will resume the round-
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Algorithm 3.6 MR idle— initial work stealing version

1 void MR_idle() {

2 MR_Context *ctxt;

3 MR_Context *current_context = MR_ENGINE(MR_eng_current_context);

4 MR_Code *resume;

5 MR_Spark spark;

6

7 MR_acquire_lock(&MR_runqueue_lock);

8 while(MR_True) {

9 if (MR_exit_now) {

10 MR_release_lock(MR_runqueue_lock);

11 MR_destroy_thread(); // does not return.

12 }

13

14 // Try to run a context

15 ctxt = MR_get_runnable_context();

16 if (ctxt != NULL) {

17 MR_release_lock(&MR_runqueue_lock);

18 if (current_context != NULL) {

19 MR_release_context(current_context);

20 }

21 MR_load_context(ctxt);

22 resume = ctxt->MR_ctxt_resume;

23 ctxt->MR_ctxt_resume = NULL;

24 MR_GOTO(resume);

25 }

26

27 // Try to run a spark.

28 if ((current_context != NULL) ||

29 (MR_num_outstanding_contexts < MR_max_contexts))

30 {

31 if (MR_try_steal_spark(&spark)) {

32 MR_release_lock(&MR_runqueue_lock);

33 if (current_context == NULL) {

34 ctxt = MR_get_free_context();

35 if (ctxt == NULL) {

36 ctxt = MR_create_context();

37 }

38 MR_load_context(ctxt);

39 current_context = ctxt;

40 }

41 MR_parent_sp = spark.MR_spark_parent_sp;

42 current_context->MR_ctxt_thread_local_mutables =

43 spark.MR_spark_thread_local_mutables;

44 MR_GOTO(spark.MR_spark_code);

45 }

46 }

47

48 MR_timed_wait(&MR_runqueue_cond, &MR_runqueue_lock);

49 }

50 }
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Algorithm 3.7 MR try steal spark()— initial work stealing version

1 MR_bool MR_try_steal_spark(MR_Spark *spark) {

2 int max_attempts;

3 MR_Deque *deque;

4

5 MR_acquire_lock(&MR_spark_deques_lock);

6 max_attempts = MR_MIN(MR_max_spark_deques, MR_worksteal_max_attempts);

7 for (int attempt = 0; attempts < max_attempts; attempt++) {

8 MR_victim_counter++;

9 deque = MR_spark_deques[MR_victim_counter % MR_max_spark_deques];

10 if (deque != NULL) {

11 if (MR_steal_spark(deque, spark));

12 MR_release_lock(&MR_spark_deques_lock);

13 return MR_true;

14 }

15 }

16 }

17 MR_release_lock(&MR_spark_deques_lock);

18 return MR_false;

19 }

robin selection where the previous thief left off. This is guaranteed because MR victim counter is

protected by the lock acquired on line 5.

All sparks created by a context are placed on its local spark deque. Sparks are only removed to

be executed in parallel when an idle engine executes MR try steal spark(). Therefore the decision

to execute a spark in parallel is only made once an engine is idle and able to run the spark. We

expect this to correct the premature scheduling decision problem we described in Section 3.3.

We benchmarked our initial work stealing implementation with the mandelbrot program from

previous sections. Table 3.7 shows the results of our benchmarks. The first and third row groups

are the same results as the first and second row groups from Table 3.6 respectively. They are

included to allow for easy comparison. The second and fourth row groups were generated with

a newer version of Mercury that implements work stealing as described above.9 The figures in

parenthesis are speedup figures.

The first conclusion that we can draw from the results is that left recursion with work stealing

is much faster than left recursion without work stealing. We can see that work stealing has solved

the premature spark scheduling problem for mandelbrot. Given that left recursive mandelbrot

represented a pathological case of this problem, we are confident that the problem has generally

been solved.

We can also see that the context limit no longer affects performance with left recursion. There

is no significant difference between the results for the various settings of the context limit.

When we consider the case for right recursion we can see that work stealing has improved

performance when there is a high context limit. This is somewhat expected since work stealing is

known as a very efficient way of managing parallel work on a shared memory system. However we

did not expect such a significant improvement in performance. In the non work stealing system,

a spark is placed on the global spark queue if both the context limit has not been reached, and

9The version of Mercury used is slightly modified, due to an oversight we had forgotten to include the context
limit condition in MR idle. The version we benchmarked includes this limit and matches the algorithms shown in
this section.
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Max no. Sequmential Parallel w/ N Engines
of contexts not TS TS 1 2 3 4

Prior right recursion results
4 23.2 (0.93) 21.5 (1.00) 21.5 (1.00) 21.5 (1.00) 21.5 (1.00) 21.5 (1.00)

64 - - 21.5 (1.00) 21.5 (1.00) 21.5 (1.00) 21.5 (1.00)
128 - - 21.5 (1.00) 19.8 (1.09) 20.9 (1.03) 21.2 (1.01)
256 - - 21.5 (1.00) 13.2 (1.63) 15.5 (1.38) 16.5 (1.30)
512 - - 21.5 (1.00) 11.9 (1.81) 8.1 (2.66) 6.1 (3.55)

1024 - - 21.5 (1.00) 11.8 (1.81) 8.0 (2.67) 6.1 (3.55)
2048 - - 21.5 (1.00) 11.9 (1.81) 8.0 (2.67) 6.0 (3.55)

New right recursion results with work stealing
4 23.2 (0.93) 21.6 (1.00) 21.5 (1.01) 21.7 (1.00) 21.7 (1.00) 21.5 (1.01)

64 - - 21.7 (1.00) 21.5 (1.01) 21.5 (1.01) 21.5 (1.01)
128 - - 21.7 (1.00) 21.6 (1.00) 21.1 (1.03) 21.2 (1.02)
256 - - 21.7 (1.00) 19.5 (1.11) 18.1 (1.20) 18.0 (1.20)
512 - - 21.5 (1.01) 12.9 (1.67) 9.0 (2.41) 7.9 (2.73)

1024 - - 21.5 (1.01) 10.8 (2.00) 7.3 (2.96) 5.6 (3.87)
2048 - - 21.5 (1.01) 10.8 (2.00) 7.3 (2.95) 5.7 (3.81)

Prior left recursion results
4 23.2 (0.93) 21.5 (1.00) 21.5 (1.00) 21.5 (1.00) 21.5 (1.00) 21.5 (1.00)

64 - - 21.5 (1.00) 21.5 (1.00) 21.4 (1.00) 21.5 (1.00)
128 - - 21.5 (1.00) 21.5 (1.00) 21.5 (1.00) 21.5 (1.00)
256 - - 21.5 (1.00) 18.3 (1.17) 18.2 (1.18) 19.6 (1.09)
512 - - 21.5 (1.00) 17.9 (1.20) 15.5 (1.39) 16.4 (1.31)

1024 - - 21.5 (1.00) 18.0 (1.19) 14.7 (1.46) 16.1 (1.33)
2048 - - 21.5 (1.00) 18.0 (1.19) 15.4 (1.40) 17.8 (1.21)

New left recursion results with work stealing
4 23.2 (0.93) 21.5 (1.00) 21.5 (1.00) 10.8 (1.99) 7.3 (2.96) 5.4 (3.95)
8 - - 21.7 (0.99) 10.8 (1.99) 7.3 (2.94) 5.5 (3.92)

16 - - 21.6 (0.99) 10.8 (1.99) 7.2 (2.98) 5.5 (3.92)
32 - - 21.5 (1.00) 10.8 (1.99) 7.2 (2.98) 5.5 (3.92)

Table 3.7: Work stealing results — initial implementation
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there is an idle engine. When a spark is being created there may not be an idle engine, however

an engine may become idle soon and wish to execute a spark. With work stealing, all sparks are

placed on local deques and an idle engine will attempt to steal work when it is ready — delaying

the decision to run the spark in parallel. This suggests that the premature scheduling problem was

also affecting right recursion. But the effect was minor compared to the pathological case we saw

with left recursion.

There is a second observation we can make about right recursion. In the cases for 256 or 512

contexts work stealing performs worse than without work stealing. We believe that the original

results were faster because more work was done in parallel. When a context spawned off a spark,

it would often find that there was no free engine, and place the spark on its local queue. After

completing the first conjunct of the parallel conjunction it would execute MR join and continue.

MR join and continue would find that the context had a spark on its local stack and would execute

this spark directly. When a spark is executed directly the existing context is re-used and so the

context limit does not increase as quickly. The work stealing version does not do this, it always

places the spark on its local stack and almost always another engine will steal that spark, and

the creation of a new context will bring the system closer to the context limit. The work stealing

program is more likely to reach the context limit earlier, where it will be forced into sequential

execution.

3.5 Independent conjunction reordering

We have shown that right recursion suffers from a context limit problem. Right recursive programs

also get smaller speedups when compared with left recursive programs. The problem with right

recursion is the large number of contexts needed. This is memory intensive, and CPU intensive

once we consider that the Boehm GC must scan these context’s stacks to check for pointers. This

can happen whenever the second or later conjunct of a parallel conjunction takes longer to execute

than the first conjunct; the first conjunct becomes blocked on the later conjunct(s).

On the other hand left recursion works well: using work stealing we are able to get very

good speedups (3.92 for mandelbrot when using four Mercury engines). When the conjunction is

independent, Mercury’s purity allows us to reorder the conjuncts of the computation and transform

right recursion into left recursion. For example it would transform the procedure in Figure 3.2(a)

into the one in Figure 3.2(b) (page 56).

We only reorder completely independent conjunctions. It may be possible to find independent

sections of dependent conjunctions and reorder them, but we have not needed to. reorder() is

invoked on parallel conjunctions without shared variables; its code is shown in Algorithm 3.8. Its

arguments are a reference to the current strongly connected component (SCC) and a list of the

parallel conjunction’s conjuncts. reorder() iterates over these goals in reverse order by means of

the recursive call on line 6. For each goal it tests if that goal makes a call to the current SCC. If

so, it leaves the goal where it is, if not reorder() will attempt to push the goal towards the end

of the list using try push conj later(). try push conj later() takes the current goal (Goal)

and the list representing the rest of the conjunction (Conjs). It iterates down this list attempting

to swap Goal with the goal at the front of the list (Pivot). Not all swaps are legal, for example a

goal cannot be swapped with an impure goal, therefore try push conj later() may not always

push a goal all the way to the end of the list.
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Algorithm 3.8 Reorder independent conjunctions

1: procedure reorder(SCC, Conjs)
2: if Conjs = [] then
3: return []

4: else
5: [Conj | ConjsTail] ← Conjs
6: ConjsTail← reorder(SCC, ConjsTail)
7: if Conj contains a call to SCC then
8: return [Conj | ConjsTail]
9: else

10: return try push conj later(Conj, ConjsTail)

11: procedure try push conj later(Goal, Conjs)
12: if Conjs = [] then
13: return [Goal]
14: else
15: [Pivot | Rest] ← Conjs
16: if can swap(Goal, Pivot) then
17: Pushed← try push conj later(Goal, Rest)
18: return [Pivot | Pushed]
19: else
20: return [Goal | Conjs]

We have benchmarked and tested this to confirm that independent right recursion now performs

the same as independent left recursion. We expected these programs to perform identically because

independent right recursion is transformed into independent left recursion.

3.6 Improved work stealing implementation

In this section we attempt to improve on our work stealing implementation from Section 3.4. While

we made these improvements, we also found it useful to change how idle engines behave. Although

these two changes are conceptually distinct, they were made together and their implementations

are interlinked. Therefore we will present and benchmark them together as one set of changes.

While our changes are an improvement in terms of design, they do not always yield an improvement

in performance.

Sparks were originally stored on context-local deques. This has the following significant prob-

lems.

There is a dynamic number of spark deques. The number of contexts changes during a pro-

gram’s execution, therefore the number of spark deques also changes. This means that we

must have code to manage this changing number of deques. This code makes the runtime

system more complicated than necessary, both when stealing a spark and when creating or

destroying a context.

Locking is required. The management of contexts must be thread safe so that the set of spark

deques is not corrupted. We store spark deques in a global array protected by a lock. It

may be possible to replace the array with a lock free data structure, however it is better to

remove the need for thread safety by using a constant set of deques.

A large number of contexts makes work stealing slower. In prior sections we have shown

that the number of contexts in use can often be very high, much higher than the number
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Algorithm 3.9 MR try steal spark()— revised work stealing version

1 MR_Code* MR_try_steal_spark(void) {

2 int victim_incex;

3 MR_Deque *deque;

4 MR_Spark spark

5

6 if ((MR_ENGINE(MR_eng_current_context) != NULL) ||

7 (MR_num_outstanding_contexts < MR_max_contexts))

8 {

9 for (int attempt = 0; attempts < MR_num_engines; attempt++) {

10 victim_index = (MR_ENGINE(MR_eng_victim_counter) + attempt)

11 % MR_num_engines;

12 if (victim_index == MR_ENGINE(MR_eng_id)) {

13 continue;

14 }

15 if(MR_steal_spark(MR_spark_deques[victim_index], &spark)) {

16 MR_ENGINE(MR_eng_victim_counter) = victim_index;

17 MR_prepare_engine_for_spark(&spark)

18 return spark.MR_spark_code;

19 }

20 }

21 MR_ENGINE(MR_eng_victim_counter) = victim_index;

22 return NULL;

23 }

of Mercury engines. If there are N engines and M contexts, then there can be at most N

contexts running and at least M − N contexts suspended (blocked and waiting to run). A

context can become suspended in one of two ways: by blocking on a future’s value in a call to

future wait/2, or by blocking on an incomplete conjunct in a call to MR join and continue.

We attempt to minimise the former case (see Chapter 4) and the latter case cannot occur

if the context has a spark on its local spark deque (it would run the spark rather than

block). Therefore the large majority of the suspended contexts will not have sparks on their

deques, and the probability of selecting a deque at random with a spark on its stack is low.

Furthermore the value of M can be very high in pathological cases. If an engine does not

successfully steal a spark from a deque, it will continue by trying to steal a spark from a

different deque. An engine can exhaust all its attempts, even when there is work available:

a spark may be placed on a deque after the engine has already attempted to steal from

it. Upon exhausting all its attempts or all the deques, the engine will sleep before making

another round of attempts (see MR try steal spark() in Algorithm 3.7 on page 69). Each

round of attempts (regardless of success or failure) has a complexity of O(M).

The approach we have taken to solving these problems is based on associating spark deques

with engines rather than with contexts. A running Mercury program has a constant number of

engines, and therefore the number of spark deques will not vary. This allows us to remove the code

used to resize the deque array. This makes context creation and destruction much simpler. It also

removes the need for the lock protecting the global array of spark deques. We can also remove the

locking code in MR try steal spark() (whose original version was shown in Algorithm 3.7) which

was used to ensure that the array is not changed while a thief is trying to steal a spark. The cost

of work stealing also becomes linear in the number of engines rather than the number of contexts.
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Algorithm 3.10 MR prepare engine for spark()

void MR_prepare_engine_for_spark(MR_Spark *spark) {

MR_Context *ctxt;

ctxt = MR_ENGINE(MR_eng_current_context);

if (ctxt == NULL) {

ctxt = MR_get_free_context();

if (ctxt == NULL) {

ctxt = MR_create_context();

}

MR_load_context(ctxt);

}

MR_parent_sp = spark->MR_spark_parent_sp;

ctxt->MR_ctxt_thread_local_mutables =

spark->MR_spark_thread_local_mutables;

}

We have made some other changes to MR try steal spark(), whose new code is shown in

Algorithm 3.9. Previously MR try steal spark() required its caller to check that stealing a spark

would not exceed the context limit; this check has been moved into MR try steal spark() (lines 6–

7). Another change is that MR try steal spark() will now call MR prepare engine for spark()

(line 12) which will load a context into the engine if it does not already have one (Algorithm 3.10).

Finally MR try steal spark() will return the address of the spark’s code; the caller will jump to

this address. If MR try steal spark() could not find a spark it will return NULL, in this case its

caller will look for other work.

In the previous version, the lock was also used to protect the victim counter; it ensured that

round-robin selection of the victim was maintained. Now each engine independently performs

its own round-robin selection of the victim using a new field MR victim counter in the engine

structure. If the engine finds a spark, MR try steal spark() will save the current victim index

to this field, as this deque may contain more sparks which the engine can try to steal later.

We have not evaluated whether this policy is an improvement. However when compared with the

improvement due to removing the lock and potentially large number of spark deques, any difference

in performance due to the selection of victims will be negligible. The two other changes are minor:

we have removed the configurable limit of the number of work stealing attempts per round and

also the test for null array slots; both are now unnecessary.

We have also made changes to the code that idle engines execute. An idle engine with a context

that is free (it can be used for any spark) or without a context will call MR idle to acquire new work.

MR idle has changed significantly; the new version is shown in Algorithm 3.11. This algorithm

uses a structure pointed to by eng data to receive notifications; we will discuss this structure and

how it is used to send and receive notifications later in this section. For now we will discuss how

MR idle looks for work in lieu of any notification.

MR idle tries to find a runnable context before trying to find a local spark (lines 12–19). A

context that has already been created usually represents work that is to the left of any work that

is still a spark (Section 3.4). Executing G1 of a parallel conjunction G1 & G2 can signal futures

that G2 may otherwise block on. Executing G1 may also create sparks leading to more parallelism.

Once a context is resumed and its execution finishes, then its memory can be used to execute a

spark from the engine’s local spark deque. Checking for runnable contexts first also helps to avoid



3.6. IMPROVED WORK STEALING IMPLEMENTATION 75

Algorithm 3.11 MR idle— improved work stealing version

1 void MR_idle(void) {

2 int engine_id = MR_ENGINE(MR_eng_id);

3 MR_EngineSleepSync *eng_data = MR_engine_sleep_data[engine_id];

4 MR_Context *ctxt;

5 MR_Context *current_context = MR_ENGINE(MR_eng_current_context);

6 MR_Code *resume;

7 MR_Spark spark;

8

9 eng_data->MR_es_state = MR_LOOKING_FOR_WORK;

10

11 // Try to find a runnable context.

12 MR_acquire_lock(&MR_runqueue_lock);

13 ctxt = MR_get_runnable_context();

14 MR_release_lock(&MR_runnable_lock);

15 if (ctxt != NULL) {

16 eng_data->MR_es_state = MR_WORKING;

17 resume = MR_prepare_engine_for_context(ctxt);

18 MR_GOTO(resume);

19 }

20

21 // Try to run a spark from our local spark deque.

22 if (MR_pop_spark(MR_ENGINE(MR_eng_spark_deque), &spark)) {

23 eng_data->MR_es_state = MR_WORKING;

24 MR_prepare_engine_for_spark(&spark);

25 MR_GOTO(spark->resume);

26 }

27

28 if (!(MR_compare_and_swap(&(eng_data->MR_es_state),

29 MR_LOOKING_FOR_WORK, MR_STEALING)))

30 {

31 // Handle the notification that we have received.

32 }

33 // Try to steal a spark

34 resume = MR_try_steal_spark();

35 if (resume != NULL) {

36 eng_data->MR_es_state = MR_WORKING;

37 MR_GOTO(resume);

38 }

39 MR_GOTO(MR_sleep);

40 }
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Figure 3.5: Nested dependent parallelism.

the creation of new contexts before existing contexts’ computations are finished. This partially

avoids deadlocks that can occur when the context limit is exceeded: executing a waiting context

rather than attempting to create a new context for a spark does not increase the number of contexts

that exist.

Algorithm 3.12 MR prepare engine for context()

MR_Code* MR_prepare_engine_for_context(MR_Context *ctxt) {

MR_Code *resume;

if (MR_ENGINE(MR_eng_current_context) != NULL) {

MR_release_context(MR_ENGINE(MR_eng_current_context));

}

MR_load_context(ctxt);

resume = ctxt->MR_ctxt_resume;

ctxt->MR_ctxt_resume = NULL;

return resume;

}

MR idle tries to run a context by attempting to take a context from the context run queue

while holding the context run queue lock (lines 12–14). If it finds a context, it will execute

MR prepare engine for context() (Algorithm 3.12), which checks for and unloads the engine’s

current context, and then loads the new context. It also clears the context’s resume field and

returns the field’s previous value so that MR idle can jump to the resume address. The context’s

resume field must be cleared here as MR join and continue may use it later for synchronisation.

Previously the run queue’s lock protected all of MR idle; this critical section has been made smaller,

which is probably more efficient.

If MR idle cannot find a context to resume then it will attempt to run a spark from its local spark

deque (lines 22–26). If there is a spark to execute and the engine does not have a context, a new

one needs to be created; this is handled by MR prepare engine for spark() above. We considered

creating a context and executing the spark only if the context limit had not been reached, however

this can create a problem, which we explain using an example. Consider Figure 3.5, which shows

two nested parallel conjunctions and two futures that create dependencies between the parallel

computations. X creates a dependency between p and q, and Y creates a dependency between r
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and t. When an engine, called E1, executes this procedure, it pushes the spark for the second and

third conjuncts of the outer conjunction onto its local spark deque. E1 then begins the execution

of p. A second engine, called E2, steals the spark from E1’s spark deque and immediately creates

two new sparks; the first is for t and the second for r. It pushes the sparks onto its deque, therefore

the spark for t is on the bottom (cold end). E2 then begins the execution of q. A third engine,

E3, wakes up and steals the spark for t from E2. Next, E2 attempts to read the value of X in

q, but it has not yet been produced. Therefore E2 suspends its context and calls MR idle, which

cannot find a context to execute and therefore checks for and finds the local spark for r. E2 needs

a new context to execute r; if the context limit is exceeded then E2 cannot proceed. Without E2’s

execution of r and production of Y, E3 cannot complete the execution of t and free up its context.

The system will not deadlock, as the execution of p by E1 can still continue, and will eventually

allow the execution of q to continue. However, we still wish to avoid such situations, therefore we

do not check the context limit before running local contexts. Without this check, E2 is able to

create a context and execute r. This can never create more than a handful of extra contexts: while

the limit is exceeded, engines will not steal work and will therefore execute sparks in a left-to-right

order; dependencies and barriers cannot cause more contexts to become blocked.

The two choices we have made, executing local sparks without checking the context limit and

attempting to resume contexts before attempting to execute sparks, work together to prevent

deadlocks that could be caused by the context limit and dependencies. The context limit is a

work-around to prevent some kinds of worst case behaviour and should not normally affect other

algorithmic choices. These algorithmic choices are valid and desirable, even if we did not need or

use the context limit, as they keep the number of contexts low. This is good for performance as

contexts consume significant amounts of memory and the garbage collector spends time scanning

that memory.

If an engine executing MR idle cannot find a local spark then it will check for any notifications

(lines 28–32). If it has not been notified then it will try to steal a spark from another engine using

MR try steal spark() (above) (lines 34–38). MR try steal spark() is a C function, allowing us

to call it from multiple places in the runtime system. It returns the address of the spark’s en-

try point to its caller, which jumps to the entry point. In this case the caller is MR idle, which

is C code that uses the Mercury calling convention. This convention passes all its arguments

and results in the Mercury abstract machine registers, including the return address. Additionally

MR idle does not call any other Mercury procedures. Therefore, it does not need to create a

frame on any of the C or Mercury stacks: any local C variables are stored on the C stack frame

shared between all Mercury procedures (and must be saved by the caller). MR idle has another

difference with other Mercury procedures: it never returns control to its caller. Instead it con-

tinues execution by jumping to the code address of the next instruction to execute, such as the

resume address of a context, or the entry point of a spark. If its callees, MR try steal spark()

or MR prepare engine for context() were to make this jump rather than returning and then

letting MR idle jump, then this would leak the stack frame created for the C call. Therefore,

MR try steal spark() and MR prepare engine for context() must return the address of the

next instruction to execute and allow MR idle to jump to this code or jump to MR sleep.
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struct MR_engine_sleep_sync {

volatile unsigned MR_es_state;

volatile unsigned MR_es_action;

union MR_engine_wake_action_data MR_es_action_data;

sem_t MR_es_sleep_sem;

lock MR_es_lock;

};

union MR_engine_wake_action_data {

MR_EngineId MR_ewa_worksteal_engine;

MR_Context *MR_ewa_context;

};

Figure 3.6: MR engine sleep sync structure

. A sleeping engine may need to wake up occasionally and handle new parallel work. There are

two ways to do this:

polling: engines can wake up occasionally and poll for new work.

notification: engines can sleep indefinitely and be woken up by some other engine when work

becomes available.

Each of these options has its own drawbacks and benefits. Polling is very simple, but it has a

number of drawbacks. An engine that wakes up will often find that there is no parallel work, and

it will have to go to sleep again. In first impression this uses only a very small amount of CPU

time which seems harmless, however many idle processes on a system behaving in this way can

add up to a significant amount of CPU time. The other problem with polling is that a parallel

task will not be executed immediately as an engine’s polling timer must first expire. These two

problems trade off against one another: the more frequently an engine polls for work the quicker

it can react but the more CPU time it will consume.

Notification has neither of these problems, and has some additional benefits. An engine making

a notification performs a deliberate action. We take advantage of this by attaching additional

information to the notification. We also send the notification to a particular engine, allowing us to

control which of several sleeping engines gets woken up and begins the parallel work. The major

drawback of a notification system is that every time parallel work is created a notification may

need to be made, and this adds to the overheads of creating parallel work.

The previous version of the runtime system used polling for work stealing and notification for

contexts. Engines waiting for a POSIX condition variable to be notified about free contexts would

time out every two milliseconds and attempt to steal work. The system did not support selecting

which engine would be woken when a context became runnable. The decision between polling and

notification can be hard to make, and it may depend on the application and its work load. We

have chosen to support both methods in our new work stealing code; notification is used by default

when a spark is created, but the user may elect to use polling. Notification is always used when a

context becomes runnable.

Notifications are implemented using the MR engine sleep sync structure shown in Figure 3.6.

A global array allows engines to access one another’s MR engine sleep sync structures. Each

structure contains the following fields: MR es state represents the engine’s current state, and is
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Figure 3.7: Engine states and transitions

used by both the owner and other engines to read and write the state of the engine; MR es action

and MR es action data are a closure describing the next action that the engine should perform;

MR es sleep sem is a semaphore that the owner will wait on in order to sleep and other engines

will signal if they want the engine to wake up; and MR es lock is used to prevent multiple engines

trying to wake the same engine at once. The MR idle code above manipulates the state field in its

structure, which is pointed to by eng data.

MR WORKING: The engine has work to do and is doing it.

MR LOOKING FOR WORK: The engine is looking for work in the form of a runnable context or local

spark. It may have work to do in the form of a local spark.

MR STEALING: The engine is currently trying to steal work.

MR SLEEPING: The engine is sleeping; it could not find any work and is now waiting for a notifica-

tion.

MR BUSY: The engine state is busy: this is a special value used for synchronisation.

MR NOTIFIED: The engine has been notified of some work to do but has not started the work yet.

The states are shown in Figure 3.7 as oval-shaped nodes in the graph except for MR NOTIFIED,

which is a single value that represents all the notification types, depicted as rectangular nodes in

the graph. The oval node with a dashed outline is illustrative only, it exists in the graph to make it

easier to visualise how work stealing may fail. An engine can move itself between any of the states

connected by a black or blue edge: blue denotes a transition that is done with a compare and

swap on the MR es state field of the MR engine sleep sync structure, whilst other transitions
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are made with an assignment. The parallel runtime system is under the most load when there

are a large number of sparks that represent small computations. When this occurs, engines spend

most of their execution time in the MR WORKING, MR LOOKING FOR WORK and MR STEALING states, or

transitioning between them. Therefore these transitions are busier and their edges in the graph

are drawn with thicker lines.

When an engine creates a spark or makes a context runnable it can notify a recipient using

the recipient’s MR engine sleep sync structure. The sender will update the action closure and

MR es state fields. This is modelled as a state transition of the recipient; such transitions are

shown with red and green edges in the graph. Red edges denote transitions from the sleeping

state: the sender acquires the MR es lock in the MR engine sleep sync structure while updating

the structure’s contents and signalling the sleep semaphore. Green edges denote transitions from

other states: the sender uses a compare and swap to write the MR BUSY value to the MR es state

field, then updates the action closure, and finally writes MR NOTIFIED to the MR es state field. A

sender using this latter method must not use the semaphore. Using compare and swap with the

state field allows the recipient to also use compare and swap, and in some cases to simply write

to the field, when changing states. This allows us to make the busy transitions more efficient.

These are the transitions from MR LOOKING FOR WORK to MR STEALING and MR WORKING. Note that

in the diagram all but one of the transitions from MR LOOKING FOR WORK and MR STEALING are

protected, the exceptions being transitions to MR WORKING, which is acceptable because we allow

some notifications to be ignored if the recipient has found some other work. The other transition

and state not listed above occurs when the system shuts down; this is another exception as an

engine could not possibly find work if the runtime were shutting down10.

There are several different actions that a sender can specify when notifying another engine.

MR ACTION CONTEXT: A context has become runnable and is pointed to by the MR es action data

field. We attach the context to the message so that we do not have to place it in the context

run queue and then retrieve it again when we know that this engine is capable of executing

the context. However this notification cannot be ignored as that would cause the context to

be leaked. Leaking a context means dropping or losing the context; a context that must be

executed may not be leaked as the computation it represents would get lost. Therefore we

only ever send MR ACTION CONTEXT messages to engines in the MR SLEEPING state, the only

state that does not have an owner-initiated transition from it.

MR ACTION RUNQUEUE CHECK: A context has become runnable and was placed on the context run

queue. Because we cannot use the MR ACTION CONTEXT message with non-sleeping engines,

we have created this message to be used with non-sleeping engines. When a context can

only be executed by a single engine, because that engine has a frame on its C stack that the

context needs, then a deadlock would occur if the context were placed in the context run

queue after the engine had checked the run queue, but before the engine had gone to sleep

(and allowed the message above). By adding this message we can notify the engine that it

should check the run queue before going to sleep.

MR ACTION WORKSTEAL: A spark has been placed on the spark deque indicated by the MR es -

action data field. This message is used to notify an engine of a new spark that it might

be able to steal and execute. Informing the thief which spark deque it should check is an

10Mercury supports exceptions and it is conceivable that an exception may make the system abort.
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optimisation. Before this message is sent, the sender will check that the recipient would not

exceed the context limit by stealing and executing the spark.

MR ACTION SHUTDOWN: The runtime system is shutting down, this engine should exit.

The code for MR idle in Algorithm 3.11 shows several of these transitions, including the transition

to the MR STEALING state on lines 28–29. If this compare and swap fails, it indicates that the current

engine should wait for MR es state to become a value other than MR BUSY and then, depending

on the action closure, either re-check the run queue or exit. We have not shown the code that

interprets and acts on the action closure, however it is similar to the switch statement in MR sleep

(Algorithm 3.13).

When an engine creates a spark, it attempts to notify other engines of the new spark. However,

looking for and notifying an idle engine on every spark creation would be prohibitively expen-

sive. Therefore we maintain a counter of the number of engines in an idle state. When this

counter is zero, an engine creating a spark will not attempt to notify any other engine. Idle

states are MR STEALING and MR SLEEPING and are shown in Figure 3.7 as shaded ovals. Only

engines in these states are sent the MR ACTION WORKSTEAL message. We considered including

the MR LOOKING FOR WORK state as an idle state and allowing engines in this state to receive the

MR ACTION WORKSTEAL message, However we think that most engines that execute MR idle will find

a runnable context or a spark from their own deque and therefore trying to steal work would be

counter productive (and such a message would often be ignored). Sending such a message would

be too speculative (and is still a little speculative when sent to an engine in the MR STEALING

state). When the user selects polling for work stealing rather notification, then an engine will

never attempt to notify another engine during spark creation.

An engine that executes MR idle and cannot find any work will jump to the MR sleep procedure,

which is shown in Algorithm 3.13. MR sleep is another Mercury procedure written in C; it starts by

attempting to put the engine into the sleeping state, checking for any notifications using a compare

and swap as we saw in MR idle. If there are no notifications it will wait on the sleep semaphore

in the MR engine sleep sync structure. When another engine signals MR es sleep sem then the

engine is woken up. The woken engine will retrieve and act on the action closure. We have shown

the full switch/case statement for interpreting the values of MR es action and MR es action data

in MR sleep. The implied switch/case statement in MR idle is similar, except that it does not need

to cover some actions. When polling is enabled the call to MR sem wait is used with a timeout. If

the timeout expires, then the engine will acquire the lock and attempt to steal a spark from any

other engine, if it finds a spark it moves to the MR WORKING state. It holds the lock until it either

decides to sleep again or sets its state so that, in the meantime, no context notification is lost, as

contexts always use notification rather than polling.

When an engine receives a MR ACTION WORKSTEAL message it executes the code at lines 18–

31. As mentioned in Section 3.4, a data race when attempting to steal a spark will result in

MR steal spark() returning an error. In MR try steal spark() this error is ignored and the

algorithm moves to the next deque. However, when an engine has received a message telling it

that there is a spark on this deque, the engine will use the loop on lines 19–23 to retry when a

collision occurs. It stops once either it has been successful or the queue is empty. We made this

decision because it is possible that many sparks may be placed on the deque at the same time, and

even though our engine lost a race to another thief, there may be more sparks available. If the

engine fails to steal a spark from this deque, the engine will jump to MR idle where it will check
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Algorithm 3.13 MR sleep

1 void MR_sleep(void) {

2 int engine_id = MR_ENGINE(MR_eng_id);

3 int victim_id;

4 MR_EngineSleepSync *eng_data = MR_engine_sleep_data[engine_id];

5 MR_bool got_spark;

6 MR_Spark spark;

7 MR_Code *resume;

8

9 if (!MR_compare_and_swap(&(eng_data->MR\_es\_state),

10 MR_STEALING, MR_SLEEPING)) {

11 // Handle the notification that we have received.

12 }

13 MR_sem_wait(&(eng_data->MR_es_sleep_sem));

14 switch(eng_data->MR_es_action) {

15 case MR_ACTION_SHUTDOWN:

16 MR_GOTO(MR_do_shutdown);

17 case MR_ACTION_WORKSTEAL:

18 victim_id = eng_data->MR_es_action_data.MR_ewa_worksteal_engine;

19 do {

20 MR_spin_loop_hint();

21 got_spark = MR_steal_spark(MR_spark_deques[victim_id],

22 &spark);

23 } while (got_spark == BUSY);

24 if (got_spark == SUCCESS) {

25 eng_data->MR_es_state = MR_WORKING;

26 MR_ENGINE(MR_eng_victim_counter) = victim_id;

27 MR_prepare_engine_for_spark(&spark);

28 MR_GOTO(spark->MR_spark_code);

29 } else {

30 MR_ENGINE(MR_eng_victim_counter) = victim_id + 1;

31 MR_GOTO(MR_idle);

32 }

33 case MR_ACTION_CONTEXT:

34 eng_data->state = MR_WORKING;

35 ctxt = eng_data->MR_es_action_data.MR_ewa_context;

36 MR_GOTO(MR_prepare_engine_for_context());

37 case MR_ACTION_RUNQUEUE_CHECK:

38 MR_GOTO(MR_idle);

39 }

40 }
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Version Sequential Parallel w/ N Engines
not TS TS 1 2 3 4

Right recursive mandelbrot (max. 1024 contexts)
Original 15.3 (0.0) 15.6 (1.7) 15.2 (0.1) 7.8 (0.0) 5.3 (0.0) 4.1 (0.0)

New (notify) 15.3 (0.1) 15.2 (0.0) 15.2 (0.0) 7.7 (0.0) 5.1 (0.0) 3.9 (0.0)
New (poll) 15.7 (1.9) 15.1 (0.0) 15.1 (0.0) 7.6 (0.1) 5.1 (0.0) 3.8 (0.0)

Left recursive mandelbrot
Original 15.2 (0.0) 15.3 (0.0) 15.2 (0.1) 7.6 (0.0) 5.2 (0.6) 3.8 (0.0)

New (notify) 15.3 (0.0) 15.2 (0.1) 15.2 (0.0) 7.7 (0.0) 5.1 (0.0) 3.9 (0.0)
New (poll) 15.3 (0.1) 15.1 (0.1) 15.2 (0.3) 7.6 (0.0) 5.1 (0.0) 3.8 (0.0)

Table 3.8: Work stealing results for mandelbrot — revised implementation

the run queue and then recheck all the spark deques. The other actions performed when receiving

a message are simple to understand from Figure 3.7 and Algorithm 3.13.

We have also had to make two changes to MR join and continue, as shown in Algorithm 3.14.

The first change is an optimisation on lines 13–14, when the parallel conjunction’s original context

is suspended and the engine’s current context executes the last conjunct in the parallel conjunction,

then the previous version of the algorithm would schedule the original context by placing it on the

run queue and then execute MR idle as its current context had finished. Since we know that the

current context is finished and the original one is runnable, we now resume the original context’s

execution directly.

The second change is on lines 19–28. This new if statement checks whether the context that

the engine holds is compatible with the spark it has just popped from the deque. A context is

incompatible if it contains stack frames of a computation that is not a parent of the computation the

spark represents. This means that the context is the original context for the parallel conjunction

it has been working on, but the spark is not part of this parallel conjunction. When this happens

we must change the context (we cannot choose a different spark without stealing and we try to

minimise stealing), therefore we suspend the current context (lines 21–23). Since a context switch

is mandatory, then we know that it is better to switch to a context that is already runnable, so

if the run queue is non-empty we put the spark back on the deque and jump to MR idle (lines

24–27); otherwise we execute the spark.

Table 3.8 shows a comparison of the previous work stealing implementation with this one using

mandelbrot. There are two row groups with three rows each. The first group shows the results

for right recursive mandelbrot while the second shows the results for left recursive mandelbrot.

The first row in each group gives the results for the previous work stealing system and the second

and third rows in each group show the results for the current system using either notifications

(second row) and polling (third row). Each result is presented with its standard deviation in

parentheses. We compiled the right recursive mandelbrot program with the conjunct reordering

transformation from Section 3.5 disabled, otherwise it would have had the same results as the left

recursive version of the same program. It is still important to test right recursion such as in this

example, as the conjunct reordering transformation cannot reorder dependent parallel conjunctions

so right recursion can still occur.

The differences between the old and new results are minimal; we have shown the standard

deviation for each result to make it easier to see where comparisons are valid. In both left and

right recursive mandelbrot programs using one Mercury engine, the new work stealing code with
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Algorithm 3.14 MR join and continue— improved work stealing version

1 void MR_join_and_continue(MR_SyncTerm *st, MR_Code *cont_label) {

2 MR_bool finished, got_spark;

3 MR_Context *current_context = MR_ENGINE(MR_eng_current_context);

4 MR_Context *orig_context = st->MR_st_orig_context;

5 MR_Spark spark;

6

7 finished = MR_atomic_dec_and_is_zero(&(st->MR_st_num_outstanding));

8 if (finished) {

9 if (orig_context != current_context) {

10 while (orig_context->MR_ctxt_resume != cont_label) {

11 CPU_spin_loop_hint();

12 }

13 MR_release_context(current_context);

14 MR_load_context(orig_context);

15 }

16 MR_GOTO(cont_label);

17 } else {

18 if (MR_pop_spark(MR_ENGINE(MR_eng_spark_deque), &spark)) {

19 if ((orig_context == current_context) &&

20 (spark.MR_spark_sync_term != st)) {

21 MR_save_context(current_context);

22 current_context->MR_ctxt_resume = cont_label;

23 MR_ENGINE(MR_eng_current_context) = NULL;

24 if (nonempty(MR_context_runqueue)) {

25 MR_push_spark(MR_ENGINE(MR_eng_spark_deque), &spark);

26 MR_GOTO(MR_idle);

27 }

28 }

29 MR_prepare_engine_for_spark(&spark);

30 MR_GOTO(spark.MR_spark_code);

31 } else {

32 if (orig_context == current_context) {

33 MR_save_context(current_context);

34 current_context->MR_ctxt_resume = cont_label;

35 MR_ENGINE(MR_eng_current_context) = NULL;

36 }

37 MR_GOTO(MR_idle);

38 }

39 }

40 }
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:- func fibs(int) = int.

fibs(N) = F :-

( N < 2 ->

F = 1

;

(

F1 = fibs(N-1)

&

F2 = fibs(N-2)

),

F = F1 + F2

).

(a) fibs/1+1, no granularity control

:- func fibs gc(int, int) = int.

fibsgc(N, Depth) = F :-

( N < 2 ->

F = 1

;

( Depth > 0 ->

(

F1 = fibs gc(N-1, Depth-1)

&

F2 = fibs gc(N-2, Depth-1)

)

;

F1 = fibs seq(N-1),

F2 = fibs seq(N-2)

),

F = F1 + F2

).

(b) fibs gc/2+1, with granularity control

Figure 3.8: Naive parallel Fibonacci with and without granularity control

notifications appears to perform slightly worse than the original work stealing code; however the

figures are so close that such a comparison may not be valid. Neither of the two configurations of the

new implementation is faster than the original implementation. For right recursive mandelbrot both

configurations of the new implementation improved on the old implementation. In left recursive

mandelbrot all three versions are comparable. The old implementation used one spark deque per

context, of which there are many in right-recursive code; whereas the new implementation uses

one spark deque per engine, of which there are a constant number. Therefore, we believe that this

supports our decision to associate deque with engines rather than contexts, in order to make work

stealing simpler.

To make it easier to see the effects of the new work stealing code, we created a new benchmark

named fibs. Fibs calculates the value of the 43rd Fibonacci number using the naive algorithm:

summing the previous two Fibonacci numbers where these are defined recursively. This calculation

is shown as the function fibs/1+1 in Figure 3.8(a). (The arity of a Mercury function is written

as N+1. The +1 refers to the return value, while N refers to the function’s input arguments.) The

naive fibs program is a useful micro-benchmark for work stealing. It creates many small tasks

whose overheads dominate the program’s execution time, allowing us easily measure the overheads

of parallel execution. However as most engines will be creating sparks, engines are more likely

to find sparks on their own deques and therefore will attempt to steal work less frequently. By

comparison in the mandelbrot program, only one engine at a time creates sparks, and therefore all

the other engines will steal work from it whenever they can. Results for this version of fibs/1+1

are shown in the “without GC” (fifth) row group of Table 3.9.

To avoid embarrassing parallelism and create a point for comparison, we have also shown results

for fibs using granularity control (GC) to create fewer but larger parallel tasks (parallelism with

coarser grains). We can achieve this by introducing a new function fibs gc/2+1, which is shown

in Figure 3.8(b). fibs gc/2+1 takes an additional argument named Depth which is the number of
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Version Sequential Parallel w/ N Engines
not TS TS 1 2 3 4

Fibs program with GC (Depth = 10)
Original 4.4 (0.0) 4.6 (0.0) 4.6 (0.0) 2.3 (0.0) 1.6 (0.0) 1.2 (0.0)

New (notify) 4.3 (0.0) 4.6 (0.0) 4.6 (0.0) 2.3 (0.0) 1.6 (0.0) 1.2 (0.0)
New (poll) 4.4 (0.0) 4.6 (0.0) 4.6 (0.0) 2.3 (0.0) 1.5 (0.0) 1.2 (0.0)

Fibs program with GC (Depth = 20)
Original 4.4 (0.0) 4.6 (0.0) 4.7 (0.0) 2.3 (0.0) 1.6 (0.0) 1.2 (0.0)

New (notify) 4.3 (0.0) 4.6 (0.0) 4.7 (0.0) 2.3 (0.0) 1.6 (0.0) 1.2 (0.0)
New (poll) 4.4 (0.0) 4.6 (0.0) 4.7 (0.0) 2.3 (0.0) 1.6 (0.0) 1.2 (0.0)

Fibs program with GC (Depth = 30)
Original 4.0 (0.0) 4.3 (0.0) 23.3 (0.4) 11.7 (0.3) 7.8 (0.2) 5.9 (0.2)

New (notify) 3.9 (0.0) 4.3 (0.0) 25.8 (0.6) 12.9 (0.3) 8.7 (0.3) 6.5 (0.0)
New (poll) 4.0 (0.0) 4.3 (0.0) 25.3 (0.1) 12.7 (0.1) 8.5 (0.0) 6.3 (0.0)

Fibs program with GC (Depth = 40)
Original 3.7 (0.0) 4.1 (0.0) 33.6 (0.8) 16.7 (0.2) 11.2 (0.3) 8.4 (0.3)

New (notify) 3.7 (0.0) 4.1 (0.0) 37.6 (0.21 19.0 (0.6) 12.7 (0.5) 9.5 (0.3)
New (poll) 3.7 (0.0) 4.1 (0.0) 36.5 (0.3) 18.3 (0.1) 12.2 (0.0) 9.1 (0.0)

Fibs program without GC
Original 4.4 (0.0) 4.6 (0.0) 32.9 (0.3) 16.5 (0.0) 11.0 (0.0) 8.3 (0.0)

New (notify) 4.3 (0.0) 4.6 (0.0) 35.8 (0.1) 18.0 (0.0) 11.9 (0.0) 8.9 (0.0)
New (poll) 4.4 (0.0) 4.6 (0.0) 35.9 (0.2) 17.8 (0.1) 11.8 (0.0) 8.9 (0.0)

Table 3.9: Work stealing results for fibs — revised implementation

recursion levels near the top of the call graph in which parallel execution should be used. Below this

depth sequential execution is used. The first four rows of Table 3.9 show results using fibs gc/2+1,

with varying initial values for Depth.

Fibs has better parallel performance when Depth’s initial value is smaller, demonstrating how

granularity control improves performance. In parallelised divide and conquer code such as this,

the context limit does not affect performance as much as it does with right single recursive code.

This is because both conjuncts have similar costs compared to the different costs in singly recursive

code. The original context is less likely to block on the completion of the second conjunct, and

if it does it will not need to block for as long as it would with right recursive code. We do not

compare the context limit behaviour of divide and conquer with that of left recursion, as work

stealing solved the context limit problems in left recursive code (Section 3.4). The coarse grained

fibs results (smaller values for Depth) show little difference between the different work stealing

implementations. However, in the fine grained fibs tests we can clearly see that the new work

stealing system has higher overheads, both with notifications and with polling. This makes sense

for the notification tests as each time an engine creates a spark it may need to notify another

engine. Even when no notification is made, the test to determine if a notification is needed adds

overhead. But the new results with polling are also slower than the old runtime system. In the

cases with a Depth of 30 or 40, the new implementation with notifications performs more slowly

than the new implementation with polling. This is not a big surprise as the cost of notification

might be occurred any time a spark is created, and the cost can vary depending on whether a

notification needs to be made, whereas the cost of polling only affects idle engines. We cannot

see this in the results as engines spend very little time idle while running fibs, and the impact on
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idle engines seldom has an effect on the elapsed execution time of a program (it may affect CPU

utilisation slightly).

When we consider the single engine cases, there is also a clear difference between the old and

new implementations, even though no work stealing or notification occurs with a single engine.

Therefore this difference in performance comes from some code that is executed when only one

engine is used. Work stealing itself, or the code in MR idle is probably not the cause of the slow

down. This leaves only MR join and continue, whose new version contains an extra test to ensure

that the engine’s current context is compatible with the spark that it found on its local deque.

Further tests could be performed to confirm this hypothesis.

The benefits of the new implementation appear to be mixed. Notifications make the new

system slower, as does the new implementation of MR join and continue. However, the smaller

number of spark deques make work stealing faster. Overall, the benefit of the new implementation

depends on the program being executed. However it is important to remember that fibs is a micro-

benchmark and does not represent typical programs, especially the non-granularity controlled and

under-granularity controlled versions as they create embarrassing parallelism.

There are some other interesting trends in the results. Most obviously, as expected and ex-

plained above, parallel fibs program with fine granularity (high values for Depth or disabled gran-

ularity control), run more slowly than those with coarse granularity. However when we consider

the sequential results for varying amounts of granularity, we see some strange results. We expected

to see the overheads of granularity control in these results; the results with large values for Depth

should be slower than the ones with smaller values. We also expected the results without granu-

larity control to be the fastest, but not significantly: in practice fibs gc/2+1 contributes to a tiny

part of the call graphs of tests with a low Depth value. However the results are very different: the

sequential execution times for fibs with a Depth of 40 are faster than those with a Depth of 10 and

those without granularity control. We are not sure of the cause, however one hypothesis is that of

the two procedures used in the granularity control code, fibs seq/1+1 and fibs gc/2+1, one is

faster, namely fibs gc/2+1, due to some strange interaction of the processor’s branch predictor

and the code’s alignment. This type of effect can be common with micro-benchmarks, which is

one reason why their use is often discouraged. This could be tested by running several tests with

randomised code layout [34].

We have noticed that in many workloads, such as a left recursive parallel loop, one engine

creates all the sparks. In situations like this, work stealing is more common than executing sparks

from an engine’s own deque. One processor would execute its own sparks while P−1 processors act

as thieves, and the original engine’s work queue can become a bottleneck. To avoid this behaviour,

a thief could steal more than one spark from a victim and put all but one of the stolen sparks

onto its own deque, then it immediately executes the single spark which was not placed on the

deque. With each stealing operation, sparks become distributed among more of the engines, which

improves the probability that a given victim has work on its own deque. Work stealing will become

less frequent as engines try to execute their own sparks before stealing other’s, this should improve

the efficiency of the program as a whole.

We are currently using the deque data structure and algorithms described by Chase and Lev

[28] (C.L. Deque). It is a circular resizable array whose operations (Section 3.4) allow us to steal

one item at a time. It is based on Arora et al. [6]. We have considered using the deque described

by Hendler and Shavit [56] (H.S. Deque), this is also a deque using a circular array based on Arora

et al. [6]. It allows a thief to steal up to half the items on a victim’s deque in a single operation.
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However, the H.S. Deque does not automatically resize, a feature that we identified as important

(Section 3.4). We should investigate using a deque similar to the H.S. Deque with resizing support

in the future. At that time we will also have to carefully consider spark execution order.

Another potential improvement is in the selection of a thief’s victim. A thief may wish to prefer

victims that are nearby in terms of memory topology, so that communication of the data relevant

to the spark is cheaper. Likewise, selecting an engine to wake up when creating a spark could also

consider memory topology.



Chapter 4

Overlap Analysis for Dependent

AND-parallelism

Introducing parallelism into a Mercury program is easy. A programmer can use the parallel con-

junction operator (an ampersand) instead of the plain conjunction operator (a comma) to tell the

compiler that the conjuncts of the conjunction should be executed in parallel with one another.

However, in almost all places where parallelism can be introduced, it will not be profitable as it

is not worthwhile parallelising small computations. Making a task available to another CPU may

take thousands of instructions, so spawning off a task that takes only a hundred instructions is

clearly a loss. Even spawning off a task of a few thousand instructions is not a win; it should

only be done for computations that take long enough to benefit from parallelism. It is often diffi-

cult for a programmer to determine if parallelisation of any particular computation is worthwhile.

Researchers have therefore worked towards automatic parallelisation. Autoparallelising compilers

have long tried to use granularity analysis to ensure that they only spawn off computations whose

cost will probably exceed the spawn-off cost by a comfortable margin. However, this is not enough

to yield good results, because data dependencies may also limit the usefulness of running compu-

tations in parallel. If a spawned off computation blocks almost immediately and can resume only

after another computation has completed its work, then the cost of parallelisation again exceeds

the benefit.

This chapter presents a set of algorithms for recognising places in a program where it is worth-

while to execute two or more computations in parallel, algorithms that pay attention to the second

of these issues as well as the first. Our system uses profiling information to estimate the times

at which a procedure call is expected to consume the values of its input arguments and the times

at which it is expected to produce the values of its output arguments. Given two calls that may

be executed in parallel, our system uses the estimated times of production and consumption of

the variables they share to determine how much their executions are likely to overlap when run in

parallel, and therefore whether executing them in parallel is a good idea or not.

We have implemented this technique for Mercury in the form of a tool that uses data from Mer-

cury’s deep profiler to generate recommendations about what to parallelise. The programmer can

then execute the compiler with automatic parallelism enabled and provide the recommendations to

generate a parallel version of the program. An important benefit of profile-directed parallelisation

is that since programmers do not annotate the source program, it can be re-parallelised easily after

89
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pA pR qA qR

produce A consume A

Seq: p, q

pA pR

qA qR

consume A

Par: p & q

pA pR qA qR

produce A
consume A

Seq: p, q

pA pR

qA qR

consume A

Par: p & q

Figure 4.1: Ample vs smaller parallel overlap between p and q

a change to the program obsoletes some old parallelisation opportunities and creates others. To do

this, the programmer can re-profile the program to generate fresh recommendations and recompile

the program to apply those recommendations. Nevertheless, if programmers want to parallelise

some conjunctions manually, they can do so: our system will not override the programmer.

We present preliminary results that show that this technique can yield useful parallelisation

speedups, while requiring nothing more from the programmer than representative input data for

the profiling run.

The structure of this chapter is as follows. Section 4.1 states our two aims for this chapter.

Then Section 4.2 outlines our general approach including information about the call graph search

for parallelisation opportunities. Section 4.3 describes how we calculate information about recur-

sive calls missing from the profiling data. Section 4.4 describes our change to coverage profiling,

which provides more accurate coverage data for the new call graph based search for parallelisation

opportunities. Section 4.5 describes our algorithm for calculating the execution overlap between

two or more dependent conjuncts. A conjunction with more than two conjuncts can be parallelised

in several different ways; Section 4.6 shows how we choose the best way. Section 4.7 discusses

some pragmatic issues. Section 4.8 evaluates how our system works in practice on some example

programs, and Section 4.9 concludes with comparisons to related work.

4.1 Aims

When parallelising Mercury programs, the best parallelisation opportunities occur where two goals

take a significant and roughly similar amount of time to execute. Their execution time should be

as large as possible so that the relative costs of parallel execution are small, and they should be

independent to minimise synchronisation costs. Unfortunately, goals expensive enough to be worth

executing in parallel are rarely independent. For example, in the Mercury compiler itself, there

are 69 conjunctions containing two or more expensive goals, goals with a cost above 10,000csc (call

sequence counts), but in only three of those conjunctions are the expensive goals independent.

This is why Mercury supports the parallel execution of dependent conjunctions through the use

of futures and a compiler transformation [113, 114] (Section 2.3). If the consumer of the variable

attempts to retrieve the variable’s value before it has been produced, then its execution is blocked

until the producer makes the variable available.

Dependent parallel conjunctions differ widely in the amount of parallelism they have available.

Consider a parallel conjunction with two similarly-sized conjuncts, p and q, that share a single

variable A. If p produces A late but q consumes it early, as shown on the right side of Figure 4.1,

there will be little parallelism, since q will be blocked soon after it starts, and will be unblocked

only when p is about to finish. Alternatively, if p produces A early and q consumes it late, as
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map foldl( , , [], Acc, Acc).

map foldl(M, F, [X | Xs], Acc0, Acc) :-

M(X, Y),

F(Y, Acc0, Acc1),

map foldl(M, F, Xs, Acc1, Acc).

(a) Sequential map foldl

map foldl( , , [], Acc, Acc).

map foldl(M, F, [X | Xs], Acc0, Acc) :-

(

M(X, Y),

F(Y, Acc0, Acc1)

) &

map foldl(M, F, Xs, Acc1, Acc).

(b) Parallel map foldl with overlap

Figure 4.2: Sequential and parallel map foldl

M F

Acc1

M F

Acc1’Acc1

M F

Acc1’

Figure 4.3: Overlap of map foldl (Figure 4.2(b))

shown on the left side of in Figure 4.1, we would get much more parallelism. The top part of each

scenario shows the execution of the sequential form of the conjunction.

Unfortunately, in real Mercury programs, almost all conjunctions are dependent conjunctions,

and in most of them, shared variables are produced very late and consumed very early. Parallelis-

ing them would therefore yield slowdowns instead of speedups, because the overheads of parallel

execution would far outweigh the benefit of the small amount of parallelism that is available. We

want to parallelise only conjunctions in which any shared variables are produced early, consumed

late, or (preferably) both; such computations expose more parallelism. The first purpose of this

chapter is to show how one can find these conjunctions.

The second purpose of this chapter is to find the best way to parallelise these conjunctions.

Consider the map foldl predicate in Figure 4.2(a). The body of the recursive clause has three

conjuncts. We could make each conjunct execute in parallel, or we could execute two conjuncts

in sequence (either the first and second, or the second and third), and execute that sequential

conjunction in parallel with the remaining conjunct. In this case, there is little point in executing

the higher order calls to the M/2 and F/3 predicates in parallel with one another, since in virtually

all cases, M/2 will generate Y very late and F/3 will consume Y very early. However, executing

the sequential conjunction of the calls to M/2 and F/3 in parallel with the recursive call will be

worthwhile if M/2 is time-consuming, because this implies that a typical recursive call will consume

its fourth argument late. The recursive call processing the second element of the list will have

significant execution overlap (mainly the cost of M/2) with its parent processing the first element

of the list even if (as is typical) the fold predicate generates Acc1 very late. This parallel version of

map foldl is shown in Figure 4.2(b). A representation of the first three iterations of it is shown in

Figure 4.3. (This is the kind of computation that Reform Prolog [11] was designed to parallelise.)
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4.2 Our general approach

We want to find the conjunctions in the program whose parallelisation would be the most profitable.

This means finding the conjunctions with conjuncts whose execution cost exceeds the spawning-off

cost by the highest margin, and whose interdependencies, if any, allow their executions to overlap

the most. It is better to spawn off a medium-sized computation whose execution can overlap

almost completely with the execution of another medium-sized computation, than it is to spawn

off a big computation whose execution can overlap only slightly with the execution of another big

computation, but it is better still to spawn off a big computation whose execution can overlap

almost completely with the execution of another big computation. Essentially, the more the tasks’

executions can overlap with one another, the greater the margin by which the likely runtime of the

parallel version of a conjunction beats the likely runtime of the sequential version (speedup), and

the more beneficial parallelising that conjunction will be.

To compute this likely benefit, we need information both about the likely cost of calls and the

execution overlap allowed by their dependencies. A compiler may be able to estimate some cost

information from static analysis. However, this will not be accurate; static analysis cannot take

into account sizes of data terms, or other values that are only available at runtime. It may be

possible to provide this data by some other means, such as by requiring the programmer to provide

a descriptions of the typical shapes and sizes of their program’s likely input data. Programming

folklore says that programmers are not good at estimating where their programs’ hotspots are.

Some of the reasons for this will affect a programmer’s estimate of their program’s likely input

data, making it inaccurate. In fact, misunderstanding a program’s typical input is one of the reasons

why a programmer is likely to mis-estimate the location of the program’s hotspots. Our argument

is that an estimate, even a confident one, can only be verified by measurement, but a measurement

never needs estimation to back it up. Therefore, our automatic parallelisation system uses profiler

feedback information. This was introduced in Section 2.4, which also includes a description of

Mercury’s deep profiler. To generate the profiler feedback data, we require programmers to follow

this sequence of actions after they have tested and debugged the program.

1. Compile the program with options asking for profiling for automatic parallelisation.

2. Run the program on a representative set of input data. This will generate a profiling data

file.

3. Invoke our feedback tool on the profiling data file. This will generate a parallelisation feedback

file.

4. Compile the program for parallel execution, specifying the feedback file. The file tells the

compiler which sequential conjunctions to convert to parallel conjunctions, and exactly how.

For example, c1, c2, c3 can be converted into c1 & (c2, c3), into (c1, c2) & c3, or

into c1 & c2 & c3, and as the map foldl example shows, the speedups you get from them

can be strikingly different.

A visual representation of such a workflow is shown in Figure 2.10 on page 30. It is up to the

programmer using our system to select training input for the profiling run in step 2. Obviously,

programmers should pick input that is as representative as possible; but even input data that

is quite different from the training input can generate useful parallelisation recommendations.

Variations in our input data will change the numerical results that we use to decide whether
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something should be parallelised, however they rarely change a “should parallelise” decision into

a “should not parallelise” decision or vice-versa. The other source of inaccuracy comes from mis-

estimating the hardware’s performance on certain operations such as the cost of spawning off a new

task. Such mis-estimations will have the same impact as variations in input data. The main focus

of this chapter is on step 3; we give the main algorithms used by the feedback tool. However, we

will also touch on steps 1 and 4. We believe that step 2 can only be addressed by the programmer,

as they understand what input is representative for their program.

Our feedback tool looks for parallelisation opportunities by doing a depth-first search of the

call tree of the profiling run, each node of which is an SCC (strongly connected component) of

procedure calls. It explores the subtree below a node in the tree only if the per-call cost of the

subtree is greater than a configurable threshold, and if the amount of parallelism it has found at

and above that node is below another configurable threshold. The first test lets us avoid looking at

code that would take more work to spawn off than to execute, while the second test lets us avoid

creating more parallel work than the target machine can handle. Together these tests dramatically

reduce the portions of a program that need analysis, reducing the time required to search for

parallelisation opportunities.

For each procedure in the call tree, we search its body for conjunctions that contain two or

more calls with execution times above yet another configurable threshold. This test also reduces

the parts of the program that will be analysed further; it quickly rejects procedures that cannot

contain any profitable parallelism. Parallelising a conjunction requires partitioning the original

conjuncts into two or more groups, with the conjuncts in each group being executed sequentially

but different groups being executed in parallel. Each group represents a hypothetical sequential

conjunction, and the set of groups represents a hypothetical parallel conjunction. As this parallel

conjunction represents a possible parallelisation of the original conjunction, we call it a candidate

parallelisation. Most conjunctions can be partitioned into several alternative candidate paralleli-

sations, for example, we showed above that map foldl has three alternative parallelisations of its

recursive branch. We use the algorithms of Section 4.5 to compute the expected parallel execution

time of each parallelisation. These algorithms take into account the runtime overheads of parallel

execution. Large conjunctions can have a very large number of candidate parallelisations (2n−1 for

n conjuncts). Therefore, we use the algorithms of Section 4.6 to heuristically reduce the number

of parallelisations whose expected execution time we calculate. If the best-performing paralleli-

sation we find shows a nontrivial speedup over sequential execution, we remember that we want

to perform that parallelisation on this conjunction. A procedure can contain several conjunctions

with two or more goals that we consider parallelising, therefore multiple candidate parallelisations

may be generated for different conjunctions in a procedure. The same procedure may also appear

more than once in the call graph. Each time it occurs in the call graph its conjunctions may

be parallelised differently, or not at all, therefore it is said to be polyvariant (having multiple

forms). Currently our implementation compiles a single monovariant procedure. We discuss how

the implementation chooses which candidate parallelisations to include in Section 4.7.

4.3 The cost of recursive calls

The Mercury deep profiler gives us the costs of all non-recursive call sites in a clique. For recursive

calls, the costs of the callee are mingled together with the costs of the caller, which is either the

same procedure as the callee, or is mutually recursive with it. Therefore if we want to know the
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cost of a recursive call site (and we do), we have to infer this from the cost of the clique as a whole,

the cost of each call site within the procedures of the clique, the structures of the bodies of those

procedures, and the frequency of execution of each path through those bodies.

For now, we will restrict our attention to SCCs that contain only a single procedure and where

that procedure matches one of the three recursion patterns below. These are among the most

commonly used recursion patterns and the inference processes for them are also among the simplest.

Later, we will discuss how partial support could be added for mutually recursive procedures.

Pattern 1: no recursion at all. This is not a very interesting pattern, but we support it

completely. We do not need to compute the costs of recursive calls if a procedure is not recursive.

Pattern 2: simply recursive procedures. The first pattern consists of procedures whose

bodies have just two types of execution path through them: base cases, and recursive cases con-

taining a single recursive call site. Our example for this category is map foldl, whose code is

shown in Figure 4.2.

Let us say that of 100 calls to the procedure, 90 were from the recursive call site and 10 were

from a call site in the parent SCC. Then we would calculate that each non-recursive call (from the

parent SCC) would on average yield nine recursive calls (from within the SCC). Note that there

are actually ten levels of recursion so we add one for the highest level of recursion (the call from

the parent SCC). We call this the average deepest recursion:

AvgMaxDepth = CallsRecCallSites/CallsParentCallSite + 1

The deepest recursive call site executes only the non-recursive path, and incurs only its costs

(CostNonRec). We measure the costs of calls in call sequence counts (csc), a unit defined in

Section 2.4.1. The next deepest would take the recursive path, and incur one copy of the non-

recursive call costs along the recursive path (CostNonRec) plus the cost of the recursive call itself

(1) plus the cost of the non-recursive branch (CostNonRec). The third last would incur two copies

of the costs of the non-recursive calls along the recursive path, plus the cost of the last call. The

formulas for each of these recursive call site costs is:

cost(0) = CostNonRec

cost(1) = CostNonRec+ CostRec+ 1

cost(2) = CostNonRec+ 2×CostRec+ 2

By induction, the cost of a recursive call site to depth D (0 being the deepest) is:

cost(D) = CostNonRec+D(CostRec+ 1)

We can now calculate the average cost of a call at any level of the recursion. Simply recursive

procedures have a uniform number of calls at each depth of the recursion. The depth representing

the typical use of such a procedure is half of AvgMaxDepth − 1. We subtract 1 as the first

level of recursion is not reached by a recursive call site. This allows us to calculate the typical

cost of a recursive call from this call site. The typical depth of this part of the call graph is

(10− 1)/2− 1 = 3.5 The extra subtraction of 1 is necessary as we start counting depth from zero.

For example, if map foldl’s non-recursive path cost is 10csc, its recursive path cost is 10,000csc,

and its typical depth is 3.5. Then its typical cost is 10 + 3.5(10, 000 + 1) = 35, 013.5 call sequence

counts.
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quicksort([], Acc, Acc).

quicksort([Pivot | Xs], Acc0, Acc) :-

partition(Pivot, Xs, Lows, Highs),

quicksort(Lows, Acc0, Acc1),

quicksort(Highs, [Pivot | Acc1], Acc).

(a) Accumulator quicksort

main

q s

q s q s

q s q s q s q s

q s q s q s q s q s q s q s q s

(b) Call graph

Figure 4.4: Accumulator quicksort, definition and call graph

Pattern 3: Divide-and-conquer procedures. The third pattern consists of procedures

whose bodies also have just two types of execution path through them: base cases, and recursive

cases containing two recursive call sites. Our example for this category is an accumulator version

of quicksort/3, whose code is shown in Figure 4.4(a).

Calculating the recursion depth of quicksort/3 can be more problematic. We know that if

a good value for Pivot is chosen quicksort/3 runs optimally, dividing the list in half with each

recursion. Figure 4.4(b) shows the call graph for such an invocation of quicksort/3. There are 15

nodes in qs’s call tree, each node has exactly one call leading to it; therefore there is one call from

outside quicksort/3’s SCC (the call from main), and 14 calls within the SCC (the calls from qs

nodes). By inspection, there are four complete levels of recursion. There are always ⌈log2(N +1)⌉

levels in a divide and conquer call graph of N nodes when the graph is a complete binary tree (we

will cover non-complete binary trees later). Since there are always N − 1 calls from within the

SCC for a graph with N nodes then it follows that there are ⌈log2(C + 2)⌉ levels for a divide and

conquer call graph with C recursive calls. In this example, C is 14 and therefore there are four

levels of recursion as we noted above. If there were two invocations of quicksort/3 from main/2

then there would be two calls from outside the SCC and 28 calls from within, in this case the depth

is still four. The average maximum recursion depth in terms of call counts for divide and conquer

code is therefore:

AvgMaxDepth = log2

(

CallsRecCallSites

CallsParentCallSite

+ 2

)

This is the estimated depth of the tree so we omit the ceiling operator. Non-complete binary trees

can be divided into two cases:

Pathologically bad trees (trees which resemble sticks) are created when consistently worst-case

pivots are chosen.

These are rare and are considered performance bugs; programmers will usually want to

remove such bugs in order to improve sequential execution performance before they attempt

to parallelise their program.

Slightly imbalanced trees are more common, such situations fall into the same class as those

where the profiling data is not quite representative of the optimised program’s future. In

Section 4.2 we explained that these variations are harmless.

Therefore, we assume that all divide and conquer code is, on average, evenly balanced.
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As before, the deepest call executes only the non-recursive path, and incurs only its costs. The

next deepest takes the recursive path, it incurs the costs of the goals along that path, plus the costs

of the two calls to the base case, plus twice the base case’s cost itself. The third deepest also takes

the recursive path, plus the costs of the two recursive calls’ executions of the recursive path, that is

three times the cost of the recursive path (3RecCost); plus the costs of the two recursive calls and

the costs of the four calls to the base case (6); plus four times the base case’s cost (4CostNonRec).

cost(0) = CostNonRec

cost(1) = CostRec+ 2 + 2CostNonRec

cost(2) = 3CostRec+ 6 + 4CostNonRec

The cost of a recursive call in a perfectly balanced divide and conquer procedure at depth D is:

cost(D) = (2D − 1)(CostRec+ 2) + 2DCostNonRec

Most of the execution of a divide and conquer algorithm occurs at deep recursion levels as

there are many more calls made at these levels than higher levels. However, for parallelism the

high recursion levels are more interesting: we know that parallelising the top of the algorithm’s

call graph can provide ample coarse-grained parallelism. We will show how to calculate the cost

of a recursive call at the top of the call graph. First, depth is measured from zero in the equations

above, so we must subtract one from AvgMaxDepth. Second, the recursive calls at the first level

call the second level, to compute the cost of calls to this level we must subtract one again. Therefore

we use the cost formula with D = AvgMaxDepth− 2.

For example, let us compute the costs of the recursive calls at the top of quicksort/3’s

call graph. In this example, we gathered data using Mercury’s deep profiler on 10 executions

of quicksort/3 sorting a list of 32,768 elements. The profiler reports that there are 655,370

calls into this SCC, 10 of which come from the parent SCC, leaving 655,360 from the two call

sites within quicksort/3’s SCC. Using the formulas above we find that the AvgMaxDepth is

log2(655, 360/10+ 2) ≈ 16. The total per-call cost of the call site to partition/4 reported by the

profiler is an estimated 35.5csc, it is the only other goal in either the base case or recursive case

with a non-zero cost. We wish to compute the costs of the recursive calls at the 15th level so D

must be 14. The cost of these calls is (214 − 1)(35.5 + 2) + 214 × 0 ≈ 614, 363. This is the average

cost of both of the two recursive calls; assuming that the list was partitioned evenly. Since the

deep profiler reports that the total per-call cost of the quicksort/3 SCC is 1,229,106csc, and the

two recursive calls cost 614,363csc each (their sum is 1,228,726csc) plus the cost of partition/4

(35.5csc) is approximately 1,228,762. This is reasonably close to the total cost of quicksort/3,

especially given other uncertainties.

There are two ways in which this calculation can be inaccurate. First, poorly chosen pivot values

create imbalanced call graphs. We have already discussed how this can affect the calculation of

the recursion depth. This can also affect the cost calculation in much the same way, and the same

rebuttals apply. There is one extra concern, a pivot that is not perfect will result in two sublists

of different sizes and therefore the recursive calls will have different costs rather than the same

cost we computed above. It is normal to use parallel slackness to reduce the impact of imbalances.

This means creating slightly more finely grained parallelism than is necessary in order to increase

the chance that a processor can find parallel work. This works because on average the computed

costs will be close enough to the real costs.
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Line Code Coverage Cost
p(X, Y, ...) :- 100%

(

X = a, 60% 0
q(...) 60% 1,000

5 ;

X = b, 20% 0
r(...) 20% 2,000

;

X = c, 20% 0
10 p(...) 20%

),

(

Y = d, 90% 0
s(...) 90% 10,000

15 ;

Y = e, 10% 0
p(...) 10%

).

Figure 4.5: Two recursive calls and six code paths.

The second cause of inaccurate results comes from our assumption about partition/4’s cost.

We assumed that partition always has the same cost at every level of the call graph. However

partition/4’s cost is directly proportional to the size of its input list which is itself directly

proportional to the depth in quicksort/3’s call graph. This would seem to affect our calculations

of the cost of recursive calls different levels within the call tree. However the rate at which

partition/4’s cost increases with height in the tree is linear, while at the same time the number

of calls to partition/4 grows at a power of two with the tree’s hight. Therefore as the tree

becomes larger the average cost of calls to partition/4 within it asymptotically approaches a

constant number. So in significantly large trees the varying costs of partition/4 do not matter.

We classify recursion types with an algorithm that walks over the structure of a procedure.

As it traverses the procedure, it counts the number of recursive calls along each path, the path’s

cost, and the number of times the path is executed. The number of times a path is executed is

generated using coverage profiling, which is described in the next section. When the algorithm

finds a branching structure like an if-then-else or switch, it processes each branch independently

and then merges its results at the end of the branch. If several branches have the same number of

recursive calls (including zero) they can be merged. If several branches have different numbers of

recursive calls they are all added to the result set. This means that the result of traversing a goal

might include data for several different recursion counts. Consider the example in Figure 4.5. The

example code has been annotated with coverage information (in the third column) and with cost

information where it is available (fourth column). The conjunction on lines three and four does not

contain a recursive call. The result of processing it is a list containing a single tuple: [(reccalls:

0, coverage: 60%, cost: 1,000)]. The result for the second switch arm (lines six and seven)

is: [(reccalls: 0, coverage: 20%, cost: 2,000)]. The third conjunction in the same

switch (lines nine and ten) contains a recursive call. The result of processing it is: [(reccalls:

1, coverage: 20%, cost: 0)]. When the algorithm is finished processing all the cases in the

switch it adds them together. When adding tuples, we can add tuples together with the same
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number of recursive calls by adding their coverage and adding their costs weighted by coverage

(these are per-call costs). This simplifies multiple code paths with the same number of recursive

calls into a single “code path”. The result of processing the switch from line 2–11 is:

[(reccalls: 0, coverage: 80%, cost: 1,250),

(reccalls: 1, coverage: 20%, cost: 0)].

In this way, the result of processing a goal represents all the possible code paths through that goal.

In this case there are three code paths through the switch, and the result has two entries, one

represents the two base case code paths, the other represents the single recursive case.

The result of processing the other switch in the example, lines 12–18, is:

[(reccalls: 0, coverage: 90%, cost: 10,000),

(reccalls: 1, coverage: 10%, cost: 0)].

In order to compute the result for the whole procedure, we must compute the product of these two

results; this computes all the possible paths through the two switches. We do this by constructing

pairs of tuples from the two lists. Since each list has two entries there are four pairs:

[ (rc: 0, cvg: 80%, cost: 1,250) × (rc: 0, cvg: 90%, cost: 10,000),

(rc: 0, cvg: 80%, cost: 1,250) × (rc: 1, cvg: 10%, cost: 0),

(rc: 1, cvg: 20%, cost: 0) × (rc: 0, cvg: 90%, cost: 10,000),

(rc: 1, cvg: 20%, cost: 0) × (rc: 1, cvg: 10%, cost: 0)]

For each pair we compute a new tuple by adding the number of recursive calls, averaging the

coverage counts, and adding the costs.

[ (rc: 0, cvg: 72%, cost: 11,250),

(rc: 1, cvg: 8%, cost: 1,250),

(rc: 1, cvg: 18%, cost: 10,000),

(rc: 2, cvg: 2%, cost: 0),

Again, we merge the cases with the same numbers of recursive calls.

[ (rc: 0, cvg: 72%, cost: 11,250),

(rc: 1, cvg: 26%, cost: 7,308),

(rc: 2, cvg: 2%, cost: 0)]

There are six paths through this procedure, and two recursive calls. The number of tuples needed

is linear in the number of path types; in this case we represent all six paths using three tuples.

This allows us to conveniently handle procedures of different forms as rather simple recursion types

such as “simple recursion” we saw above: a procedure with two recursive paths with one call each

can be handled as if it has just one recursive path and one base case.

We can determine the type of recursion for any list of recursion path information. If there is

a single path entry with zero recursive calls then the procedure is not recursive. If there is an

entry for a path with zero recursive calls, and a path with one recursive call then the procedure

is “simply recursive”. Finally if there are two paths, one with zero recursive calls and one with

two recursive calls, then we know that the procedure uses “divide and conquer” recursion. It is

possible to generalise further, if a procedure has two entries, one with zero recursive calls and the

other with some N recursive calls. Then the recursion pattern is similar to divide and conquer

except that the base in the formulas shown above is N rather than 2. It has not been necessary

to handle these cases.
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Recursion Type No. of SCCs Percent Total cost
Not recursive 292,893 78.07% 2,320,270,385
Simple recursion 48,458 12.92% 402,430,967
Mutual recursion: totals 19,293 5.14% 198,326,577

2 procs 4,066 1.08% 27,099,504
3 procs 9,393 2.50% 14,846,076
4 procs 1,092 0.29% 12,542,308
5 procs 1,035 0.28% 3,863,295
6+ procs 3,707 0.99% 139,975.394

Unknown 11,803 3.05% 8,838,655
Divide and conquer 1,917 0.51% 5,337,293
Multiple recursive paths: totals 1,089 0.28% 4,678,467

rec-branches: 1, 2 44 0.01% 580,994
rec-branches: 2, 3 281 0.07% 189,377
rec-branches: 2, 3, 4 564 0.15% 3,902,188
other 200 0.05% 5,908

Table 4.1: Survey of recursion types in an execution of the Mercury compiler

There are many possible types of recursion, and we wanted to limit our development effort to

just those recursion types that would occur often enough to be important. Therefore, we ran our

analysis across all the SCCs in the Mercury compiler, the largest open source Mercury program, to

determine which types of recursion are most common. Table 4.1 summarises the results. We can

see that most SCCs are not recursive, and the next biggest group is the simply recursive SCCs,

accounting for nearly 13% of the profile’s SCCs. If our analysis finds an SCC with more than one

procedure, it counts the number of procedures and marks the whole SCC as mutually recursive and

does no further analysis. It may be possible to perform further analysis on mutually recursive SCCs,

but we have not found it important to do this yet. Mutual recursion as a whole accounts for a larger

proportion of procedures than divide and conquer. The “Multiple recursive paths” recursion types

refer to cases where there are multiple recursive paths through the SCC’s procedure with different

numbers of recursive calls plus a base case. The table row labelled “Unknown” refers to cases that

our algorithm could not or does not handle. This can include builtin code, foreign language code

and procedures that may backtrack because they are either nondet or multi. Note that some

procedures such as semidet procedures which we cannot parallelise are still interesting: such a

procedure may be involved in the production or consumption of a variable that is an argument

to the procedure; understanding this procedure may provide information needed to decide if a

parallelisation in the procedure’s caller is profitable or not.

The profiler represents each procedure in the program’s source code as a ProcStatic struc-

ture (Section 2.4.1). Each procedure may be used multiple times and therefore have multiple

ProcDynamic structures appearing in different SCCs. Each SCC may have a different recursion

type depending on how it was called. For example, calling length/2 on an empty list will not

execute the base case and therefore this use of length/2 is non-recursive.

Some of the “Multiple recursive paths” recursion type cases are due to the implementation of

the map ADT and code in Mercury’s standard library, which uses a 2-3-4 tree implementation, and

hence almost all of the cases with 2, 3 or 4 recursive calls on a path are 2-3-4 tree traversals. These

traversals also account for some of the other multi recursive path cases, such as those with 2 or 3

recursive calls on a path. In many cases these are the same code running on a tree without any

4-nodes.
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main

f

g

h

(a) One loop

main

f

g

(b) Two loops

main

f

g

(c) Three loops

Figure 4.6: Mutual recursion

It may be possible to handle simple cases of mutual recursion by a process of hypothetical

inlining. Consider the call graph in Figure 4.6(a). In this example f , g and h represent an SCC, f

calls g, which calls h, which calls f . These calls are recursive, they create a loop between all three

procedures. Prior to doing the recursion path analysis we could inline each of these procedure’s

representations inside one another as follows: inline h into g and then inline g into f . This creates

a new pseudo-procedure that is equivalent to the loop between the three procedures. We can

then run the recursion path analysis on this procedure and apply the results to the three original

procedures. We have not yet needed to implement call site cost analysis for mutually recursive

procedures; therefore this discussion is a thought experiment and not part of our analysis tool.

We believe that we can handle some other forms of mutually recursive code. One example

of this is the graph in Figure 4.6(b), which has two loops, one mutually recursive loop and one

loop within g. We cannot inline g into f because g has a recursive call whose entry point would

disappear after inlining. But we can duplicate f , creating a new f ′, and re-write g’s call to f as a

call to f ′. This allows us to inline f ′ into g without an issue, and f ’s call to g is no longer recursive.

The graph in Figure 4.6(c) is more complicated; it has three loops. In this case we cannot inline

g into f because of the loop within g, and we cannot inline f into g because of the loop within f .

Simple duplication of either f or g does not help us.

Our current implementation handles non-recursive and simply recursive loops within a single

procedure. We have shown how to calculate the cost of recursive calls in divide and conquer code.

However, generating efficient parallel divide and conquer code is slightly more complicated, as

Granularity Control is needed to prevent embarrassingly parallel workloads (Section 3.6). This is

less true with simply recursive code as a non-recursive call that is parallelised against will usually

have a non-trivial cost in all levels of the recursion.
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Line Coverage Percall Cost Code
Static Deep

1 7,851 2,689 3,898,634 foldl3(P, Xs0, !Acc1, ...) :-

2 - - - (

3 2,142 1 0 Xs0 = []

4 - - - ;

5 5,709 2,688 0 Xs0 = [X | Xs],
6 5,709 2,688 1,449 P(X, !Acc1, ...),

7 5,709 2,688 3,897,182 foldl3(P, Xs, !Acc1, ...)

8 - - - ).

Figure 4.7: Static and deep coverage data for foldl3/8

4.4 Deep coverage information

In Section 2.4.1 we introduced the deep profiler, a profiler that can gather ancestor context specific

profiling data. We also introduced coverage profiling in Section 2.4.3, which can gather the coverage

of any program point. Before we started this project the coverage data gathered was not ancestor

context specific. Coverage data was collected and stored in the profiler’s ProcStatic structures

where it was not associated with a specific ancestor context of a procedure. Throughout this

section we will use the term deep to describe data that is ancestor context specific, and we will

use static to describe data that is not ancestor context specific. We want to use deep profiling

data for automatic parallelisation, which requires using analyses that in turn require coverage data

such as the calculation of recursive call sites’ costs (Section 4.3), and variable use time analysis

(Section 2.4.4). Therefore we have changed the way coverage data is collected and stored; this

section describes our changes.

Our automatic parallelisation tool uses deep profiling data throughout. However, using deep

profiling data and static coverage data creates inconsistencies that can result in erroneous results.

Figure 4.7 shows list.foldl3/8 from Mercury’s standard library on the right hand side. On the

immediate left (the fourth column) of each line of code, we have shown deep profiling data from

a profiling run of the Mercury compiler. The first cell in this column shows the per-call cost of

the call site in the parent SCC (the total cost of foldl3/8’s call graph). The other cells in this

column show the per-call costs of foldl3/8’s call sites; the recursive calls cost is the cost of the

first recursive call (the call on the top-most recursion level) as calculated by the algorithms in the

previous section. This recursion level was chosen as so that the sum of the costs of calls in the body

of the procedure is approximately equal to the cost of the procedure from its parent call site. The

second and third columns in this table report static and deep coverage data respectively. The deep

profiling and coverage data was collected from a single SCC of foldl3/81 whose ancestor context

is part of the compiler’s mode checker; the last procedure in the call chain, excluding foldl3/8, is

modecheck to fixpoint/8.

Using the static coverage data we can see that foldl3/8 is called 7,851 times (line one) through-

out the execution of the compiler; this includes recursive calls. There are 5,709 directly recursive

calls (the coverage on line seven). Using these figures we can calculate that the average deepest

recursion is 2.66 levels. We can conclude that on average across the whole program, foldl3/8

1We do not mean that foldl3/8 has more than one SCC, and we only picked one; we mean that foldl3/8 is
called many times during the compiler’s execution, each time this creates a new SCC and we have picked one of
these.
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does not make very deep recursions (it is called on short lists). This information is correct when

generalised across the program, but it is incorrect in specific ancestor contexts: if we tried to anal-

yse this loop in a specific context it would cause problems. For example, if we use this information

with the deep profiling information in the fourth column we would calculate an incorrect value

of 4,464csc for the recursive call’s cost at this top-most level of the call tree. This is obviously

incorrect: if we add it to the cost of the higher order call, 1,449csc then the sum is 5,913csc, which

is a far cry from the measured cost of the call to this SCC (3,898,634csc). It is easy to understand

how this discrepancy could affect a later analysis such as the variable use time analysis.

If instead we use coverage information specific to this ancestor context, then we see that the

base case is executed only once and the recursive case is executed 2,688 times. This means that

the recursion is much deeper, with a depth of 2,689 levels. Using this value, we calculate that the

cost of the recursive call at the top-most level of the recursion is 3,897,182csc.

We said above that coverage data was stored in ProcStatic structures where it was not associ-

ated with an ancestor context. The data was represented using two arrays and an integer describing

the arrays’ lengths. Each corresponding pair of slots in the arrays referred to a single coverage

point in the procedure. The first array gives static information such as the type of coverage point

and its location in the compiler’s representation of the procedure. The second array contains the

current value of the coverage point, which is incremented each time execution reaches the program

point. Each procedure in the program is associated with a single ProcStatic structure and any

number of ProcDynamic structures. Each ProcDynamic structure represents a use of a procedure

in the program’s call graph (modulo recursive calls). We moved the array containing the cover-

age points’ execution counts into the ProcDynamic structure. Since there are more ProcDynamic

structures than ProcStatic structures in a program’s profile, this will make the profile larger,

consuming more memory and potentially affecting performance. It is important to minimise a pro-

filer’s impact on performance. Poor performance both affects the user’s experience and increases

the risk of distorting the program’s profile. However, we do not have to worry about distortion of

time measured in call sequence counts. Time measured in seconds may be distorted slightly, but

this is minimal.

Normally during profiling we disable optimisations that can transform a program in ways that

would make it hard for a programmer to recognise their program’s profile. For example inlining one

procedure into another might cause the programmer to see one of their procedures making calls that

they did not write. However automatic parallelisation, like other optimisations, is used to speedup

a program; a programmer will typically use other optimisations in conjunction with automatic

parallelism in order to achieve more greater speedups. The compiler performs parallelisation after

most other optimisations, and therefore it operates on a version of the program that has already

had these optimisations applied. So that we can generate feedback information that can easily be

applied to the optimised program, the feedback tool must also operate on an optimised version of

the program. Therefore we must enable optimisations when compiling the program for profiling

for automatic parallelism.

Table 4.2 shows the overheads of profiling the Mercury compiler, including coverage profiling.

We compiled the Mercury compiler with seven different sets of options for profiling. The two

row groups of the table show results with optimisations both disabled and enabled. The rows of

the table give results for no profiling support2, profiling support without coverage profiling, static

2The non-profiling version of the compiler was not compiled or tested with optimisations disabled as it ignores
the ‘--profile-optimised’ flag when profiling is disabled.
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Profiling type Time .text .(ro)data .bss Heap growth Profile size

Without optimisations
no coverage 55.4s 30,585K 32,040K 5,646K 419,360K 35,066K
static coverage 56.0s 34,097K 33,547K 6,267K 419,380K 36,151K
deep coverage 57.6s 34,327K 33,306K 5,646K 476,880K 42,896K

With optimisations
no profiling 10.6s 12,003K 3,203K 5,645K 186,752K -
no coverage 35.9s 29,599K 31,218K 5,646K 319,184K 23,465K
static coverage 37.1s 33,391K 32,856K 6,302K 319,188K 24,640K
deep coverage 37.6s 33,628K 32,630K 5,646K 370,288K 30,901K

Table 4.2: Coverage profiling overheads

coverage profiling support, and dynamic coverage profiling support. The second column in the

table shows the user time, an average of 20 executions while compiling the eight largest modules

of the compiler itself. The next three columns show the sizes of different sections in the executable

file: the size of the executable’s ‘.text’ section (the compiled executable code); the size of the

‘.data’ and ‘.rodata’ sections (static data); the size of the ‘.bss’ section (static data that is

initially zero). The sixth column shows the heap growth, the amount by which the program break3

moved during the execution. The final column shows the size of the resulting profiling file. All

sizes are shown in kilobytes (KiB) (1024 bytes).

We can see that enabling profiling slows the program down by at least a factor of three, or a

factor of five if optimisations are disabled. The difference between the results with and without

optimisations is unsurprising. It is well established that simple optimisations such as inlining can

make a significant difference to performance. As optimisations make the program simpler, the

call graph also becomes simpler. For example, inlining reduces the number of procedures in the

program, which means that fewer profiling data structures are needed to represent them both

in the program’s memory and in the data file. This is why the results show that the optimised

programs use less memory and generate smaller profiling data files. Optimisations can also improve

performance in another way: inlining reduces the number of procedures which reduces the amount

of instrumentation placed in the code by the profiler.

Enabling static coverage profiling does not significantly impact the heap usage. The ProcStatic

structures and their coverage data are stored in the program’s static data, the ‘.data’, ‘.rodata’

and ‘.bss’ sections of the executable; in particular, the coverage point values themselves are in

the ‘.bss’ section. Coverage profiling also creates a small increase in the size of the executable

code, as the code now contains some additional instrumentation. Likewise this instrumentation

affects performance very slightly. The effect is well within our goal of minimising coverage profiling

overheads. Associating coverage data with ProcDynamic structures rather than ProcStatic struc-

tures significantly affects heap usage as ProcDynamic structures and the coverage points therein

are all stored on the heap. This additional amount of heap usage (56MB or 50MB, without and

with optimisations respectively) is acceptable. Conversely we see that the amount of statically

allocated memory decreases when using deep coverage profiling. The size of the ‘.text’ section

and the program’s execution time increase only slightly when using deep coverage information.

This additional cost of collecting deep coverage data is very small compared to the benefit that

this data provides, especially when optimisations are enabled during a profiling build.

3The program break marks the end of the heap area. See the sbrk(2) Unix system call.
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Algorithm 4.1 Dependent parallel conjunction algorithm, for exactly two conjuncts

1: procedure overlap simple(SeqT imeq, V arUsesListq, ProdT imeMapp)
2: CurSeqT ime← 0
3: CurParT ime← 0
4: sort V arUsesListq on ConsT imeq,i
5: for (V ari, ConsT imeq,i) ∈ V arUsesListq do
6: Durationq,i ← ConsT imeq,i − CurSeqT ime
7: CurSeqT ime← CurSeqT ime+Durationq,i

8: ParWantT imeq,i ← CurParT ime+Durationq,i

9: CurParT ime← max(ParWantT imeq,i, P rodT imeMapp[V ari])

10: DurationRestq ← SeqT imeq − CurSeqT ime
11: ParT imeq ← CurParT ime+DurationRestq
12: return ParT imeq

4.5 Calculating the overlap between dependent conjuncts

The previous two sections provide the methods necessary for estimating a candidate parallelisa-

tion’s performance, which is the topic of this section. As stated earlier, dependencies between

conjuncts affect the amount of parallelism available. Our goal is to determine if a dependent par-

allel conjunction exposes enough parallelism to be profitable. We show this as the amount that

the boxes overlap in diagrams such as Figure 4.1; this overlap specifically represents the amount of

elapsed time that can be saved by parallel execution. Estimating this overlap in the parallel execu-

tions of two dependent conjuncts requires knowing, for each of the variables they share, when that

variable is produced by the first conjunct and when it is first consumed by the second conjunct.

The two algorithms for calculating estimates of when variables are produced and consumed (vari-

able use times) are described in Section 2.4.4. The implementations of both algorithms have been

updated since my honours project; the algorithms now make use of the deep coverage information

described in the previous section.

Suppose a candidate parallel conjunction has two conjuncts p and q, and their execution times

in the original, sequential conjunction (p, q), are SeqT imep and SeqT imeq, which are both pro-

vided by the profiler. The parallel execution time of p in p&q, namely ParT imep, is the same as its

sequential execution time; if we ignore overheads, which we do for now but will come back to them

later. Whilst the parallel execution time of q, namely ParT imeq, may be different from its sequen-

tial execution time as q may block on futures that p may not have signalled yet. In Section 2.4.2

we showed how to calculate ParT imeq in cases where there is a single shared variable between p

and q. Then we use ParT imep and ParT imeq to calculate the speedup due to parallelism.

When there are multiple shared variables we must use a different algorithm such as the one

shown in Algorithm 4.1, which is a part of the full algorithm, shown in Algorithm 4.3. It calculates

ParT imeq from its arguments SeqT imeq, V arUsesListq and ProdT imeMapp. V arUsesListq is

a list of tuples, with each tuple being a shared variable and the time at which q would consume the

variable during sequential execution. ProdT imeMapp is a map (sometimes called a dictionary)

that maps each shared variable to the time at which p would produce the variable during parallel

execution.

The algorithm works by dividing SeqT imeq into chunks and processing them in order; it keeps

track of the sequential and parallel execution times of the chunks so far. The end of each chunk,

except the last, is defined by q’s consumption of a shared variable; the last chunk ends at the end

of the q’s execution. This way each of the first i chunks represents the time before q is likely to
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p pB + pA + pR

AB

pB pA pR

q qA qB + qR

A B

qA qB qR

Figure 4.8: Overlap with multiple variables

consume the ith shared variable, these chunks’ durations are Durationq,i (line 6). The last (i+1th)

chunk represents the time after producing the last shared variable but before q finishes: q may use

this time to produce any variables that are not shared with p but are consumed by code after the

parallel conjunction. We call this chunk’s duration is DurationRestq (line 10).

Figure 4.8 shows the overlap of a parallel conjunction (p & q) with two shared variables A and

B. The figure is to scale and the sequential execution times of p and q are 5 and 4 respectively.

q is broken up into the chunks qA, qB and qR. The algorithm keeps track of the sequential

and parallel execution times of q up to the consumption of the current shared variable. During

sequential execution, each chunk can execute immediately after the previous chunk, since the values

of the shared variables are all available when q starts. During parallel execution, p is producing

the shared variables while q is running. If q tries to use a variable (by calling future wait/2

on the variable’s future) and the variable has not been produced yet then q will block. We can

see this for A: ParWantT imeq,0 is 2 but ProdT imeMapp[A] is 4, so during the first execution of

Algorithm 4.1’s loop, line 9 sets CurParT ime to 4, which is when q may resume execution. It is

also possible that p will produce the variable before it is needed, as is the case for B. In cases such

as this, q will not be suspended. In B’s case, when the loop starts its second iteration CurSeqT ime

is 2, CurParT ime is 4, ConsT imeq,1 is 3.5 and ProdT imeMapq[B] is 1; the algorithm calculates

the duration of this second chunk as 1.5, and ParWantT imeq,1 as 5.5. Line 9 sets CurParT ime

to 5.5 which is the value of ParWantT imeq,1 as B’s value was already available. After the loop

terminates the algorithm calculates the length of the final chunk (DurationRestq) as 0.5, and adds

it to CurParT ime to get the parallel execution time of the conjunction: 6.

When there are more than two conjuncts in the parallel conjunction our algorithm requires an

outer loop. An example of such parallel conjunction is shown in Figure 4.9. We can see that the

third conjunct’s execution depends on the second’s, which depends upon the first’s. Dependencies

can only exist in the left to right direction: Mercury requires all dependencies to be left to right; it

will reorder right to left dependencies and report errors for cyclic dependencies. The new algorithm

therefore iterates over the conjuncts from left to right, processing each conjunct with a loop similar

to the one in Algorithm 4.1.

Algorithm 4.2 shows a more complete version of our algorithm; this version handles multiple

conjuncts and variables, but does not account for overheads. The input of the algorithm is Conjs,

the conjuncts themselves. The algorithm returns the parallel execution time of the conjunction

as a whole. The algorithm processes the conjuncts in an outer loop on lines 4–20. Within each

iteration of this loop, it processes the first i chunks of each conjunct in the loop on lines 9–17.
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Figure 4.9: Overlap of more than two conjuncts

This inner loop is based on the previous algorithm, the difference is that it must now also act

on variables being produced by the current conjunct. V arUsesList now contains both variable

consumptions and productions, so the inner loop creates chunks from variable productions as well.

The if-then-else on lines 12–17 handles the different producing and consuming cases. When the

current conjunct produces a variable, we simply record when this happens in ProdT imeMap,

which is shared by all conjuncts for variable productions. The map must be built in this way,

at the same time as we iterate over the conjuncts’ chunks, so that it reflects how a delay in the

execution of one task will usually affect when variables may be consumed by another task. We

can see this in Figure 4.9: r blocks for longer on B than it normally would because q blocks on A.

Note that V ari,j will always be in ProdT imeMap when we look for it, because it must have been

produced by an earlier conjunct and therefore processed by an earlier iteration of the loop over

the conjuncts. The only new code outside the inner loop is the use of the TotalParT ime variable,

the total execution time of the parallel conjunction; it is calculated as the maximum of all the

conjuncts’ parallel execution times.

In many cases, the conjunction given to Algorithm 4.2 will contain a recursive call. In these

cases, the algorithm uses the recursive call’s cost at its average recursion depth in the sequential

execution data gathered by the profiler. This is naive because it assumes that the recursive call

calls the original, sequential version of the procedure, however the call is recursive and so the

parallelised procedure calls itself, the transformed parallel procedure whose cost at its average

recursion depth is going to be different from the sequential version’s. When the recursive call calls

the parallelised version, there may be a similar saving (absolute time, not ratio) on every recursive

invocation, provided that there are enough free CPUs. How this affects the expected speedup of

the top level call depends on the structure of the recursion.

It should be possible to estimate the parallel execution time of the top level call into the

recursive procedure, including the parallelism created at each level of the recursion, provided

that the recursion pattern is one that is understood by the algorithms in Section 4.3. Before we

implemented this it was more practical to improve the efficiency of recursive code (Chapter 5). We

have not yet returned to this problem, see Section 7.1. Nevertheless, our current approach handles

non-recursive cases correctly, which are the majority (78%) of all cases; it handles a further 13%

of cases (single recursion) reasonably well (Section 4.3). Note that even better results for singly

recursive procedures can be achieved because of the work in Chapter 5.
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Algorithm 4.2 Dependent parallel conjunction algorithm

1: procedure find par time(Conjs)
2: ProdT imeMap← empty
3: TotalParT ime← 0
4: for Conji ∈ Conjs do
5: CurSeqT imei ← 0
6: CurParT imei ← 0
7: V arUsesListi ← get variable uses(Conji)
8: sort V arUsesListi by time
9: for (V ari,j , T imei,j) ∈ V arUsesListi do

10: Durationi,j ← T imei,j − CurSeqT imei
11: CurSeqT imei ← CurSeqT imei +Durationi,j

12: if Conji produces V ari,j then
13: CurParT imei ← CurParT imei +Durationi,j

14: ProdT imeMap[V ari,j ] ← CurParT imei
15: else ⊲ Conji must consume V ari,j
16: ParWantT imei,j ← CurParT imei +Durationi,j

17: CurParT imei ← max(ParWantT imei,j , P rodT imeMap[V ari,j ])

18: DurationResti ← SeqT imei − CurSeqT imei
19: CurParT imei ← CurParT imei +DurationResti
20: TotalParT ime← max(TotalParT ime,CurParT imei)

21: return TotalParT ime

Cost Local use of Acc1
M 1,625,050 none
F 3 production 3
map foldl 1,625,054 consumption 1,625,051

Table 4.3: Profiling data for map foldl

So far, we have assumed an unlimited number of CPUs, which of course is unrealistic. If the

machine has e.g. four CPUs, then the prediction of any speedup higher than four is obviously

invalid. Less obviously, even a predicted overall speedup of less than four may depend on more

than four conjuncts executing all at once at some point. We have not found this to be a problem

yet. If and when we do, we intend to extend our algorithm to keep track of the number of active

conjuncts in all time periods. Then if a chunk of a conjunct wants to run in a time period when

all CPUs are predicted to be already busy, we assume that the start of that chunk is delayed until

a CPU becomes free.

To see how the algorithm works on realistic data, consider the map foldl example from Fig-

ure 4.2. Table 4.3 gives the costs, rounded to integers, of the calls in the recursive clause of

map foldl when used in a Mandelbrot image generator (as in Section 4.8). Each call to M draws

a row, while F appends the new row onto the cord of the rows already drawn. The cord is an

instance of a data structure that prescribes a sequence (like a list) but whose append operation

runs in constant time. The table also shows when F produces Acc1 and when the recursive call

consumes Acc1. The costs were collected from a real execution using Mercury’s deep profiler and

then rounded to make mental arithmetic easier.

Figure 4.2(b) shows the best parallelisation of map foldl. When evaluating the speedup for this

parallelisation, the production time for Acc1 in the first conjunct (M(X, Y), F(Y, Acc0, Acc1)) is

1, 625, 050+3 = 1, 625, 053, and the consumption time for Acc1 in the recursive call, map foldl(M,
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F, Xs, Acc1, Acc), is 1, 625, 051. In this example we are assuming that the recursive call calls a

sequential version of the code and that the recursive case will be executed, and in turn the recursive

case calls the base case; we revisit this assumption later. The first iteration of Algorithm 4.2’s outer

loop processes the first conjunct, breaking it into two chunks separated by the production of Acc1,

which is added to ProdT imeMap. During the second iteration the recursive call is also broken

into two chunks, which are separated by the consumption of Acc1. However, inside the recursive

call Acc1 is called Acc0, and so it is the consumption of Acc0 within the recursive call that is

actually considered. This chunk is a long chunk (1,625,051csc). ParWantT ime will be 1,625,051

(above) and ProdT imeMap[Acc1] will be 1,625,053 (above). The execution of the recursive call is

likely to block but only very briefly, CurParT imei will be set to 1,625,053 and the second chunk’s

duration will be very small, only 1, 625, 054 − 1, 625, 051 = 3. This is added to CurParT imei to

determine the parallel execution time of the recursive call (1,625,056), which is also the maximum

of either of the conjuncts’ total parallel execution times, making it the parallel execution time of

the conjunction as a whole.

If there are many conjuncts in the parallel conjunction or if the parallel conjunction contains a

recursive call, we can create more parallelism than the machine can handle. If the machine has e.g.

four CPUs, then we do not actually want to spawn off hundreds of iterations for parallel execution,

since parallel execution has several forms of overhead. We classify each form of overhead into one

of two groups, costs and delays. Costs are time spent doing something, e.g. the current context

must do something such as spawn off another computation or read a future. Delays represent time

spent waiting for something; during this time the context is suspended (or being suspended or

being woken up).

SparkCost is the cost of creating a spark and adding it to the local spark stack. In a parallel

conjunction, every conjunct that is not the last conjunct incurs this cost to create the spark

for the rest of the conjunction.

SparkDelay is the estimated length of time between the creation of a spark and the beginning of

its execution on another engine. Every parallel conjunct that is not the first incurs this delay

before it starts running.

SignalCost is the cost of signalling a future.

WaitCost is the cost of waiting on a future.

ContextWakeupDelay is the estimated time that it takes for a context to resume execution after

being placed on the runnable queue, assuming that the queue is empty and there is an idle

engine. This can occur in two places: either at the end of a parallel conjunction the original

context may need to be resumed to continue its execution, and if a context is blocked on a

future it will need to be resumed once that future is signalled.

BarrierCost is the cost of executing the operation that synchronises all the conjuncts at the

barrier at the end of the conjunction.

Our runtime system is now quite efficient so that these costs are kept low (Chapter 3). This

does not eliminate the overheads, and cannot ever hope to, instead we wish to parallelise only

those conjunctions that are still profitable despite overheads. This is why our system actually uses

Algorithm 4.3, a version of Algorithm 4.2 that accounts for overheads.
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Algorithm 4.3 Dependent parallel conjunction algorithm with overheads

1: procedure find par time(Conjs, SeqT imes)
2: N ← length(Conjs)
3: ProdT imeMap← empty
4: FirstConjT ime← 0
5: TotalParT ime← 0
6: for i← 0 to N − 1 do
7: Conji ← Conjs[i]
8: CurSeqT imei ← 0
9: CurParT imei ← (SparkCost+ SparkDelay)× i

10: V arUsersListi ← get variable uses(Conji)
11: sort V arUsesListi by time
12: if i 6= N then
13: CurParT imei ← CurParT imei + SparkCost

14: for (V ari,j , T imei,j) ∈ V arUsesListi do
15: Durationi,j ← T imei,j − CurSeqT imei
16: CurSeqT imei ← CurSeqT imei +Durationi,j

17: if Conji produces V ari,j then
18: CurParT imei ← CurParT imei +Durationi,j + SignalCost
19: ProdT imeMap[V ari,j ]← CurParT imei
20: else ⊲ Conji must consume V ari,j
21: ParWantT imei,j ← CurParT imei +Durationi,j

22: CurParT imei ← max(ParWantT imei,j , P rodT imeMap[V ari,j ]) +WaitCost
23: if ParWantT imei,j < ProdT imeMap[V ari,j ] then
24: CurParT imei ← CurParT imei + ContextWakeupDelay

25: DurationResti ← SeqT imei − CurSeqT imei
26: CurParT imei ← CurParT imei +DurationResti +BarrierCost
27: if i = 0 then
28: FirstConjT ime = CurParT imei
29: TotalParT ime← max(TotalParT ime,CurParT imei)

30: if TotalParT ime > FirstConjT ime then
31: TotalParT ime← TotalParT ime+ ContextWakeupDelay

32: return TotalParT ime
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Algorithm 4.3 handles each of the overheads listed above. The first two overheads that this

algorithm accounts for are SparkCost and SparkDelay on lines 9 and 12–13. Each conjunct is

started by a spark created by the previous conjunct, except the first which is executed directly and

therefore has no delay. In a conjunction G0 & G1 & G2, the first conjunct (G0) is executed directly

and spends SparkCost time creating the spark for G1 & G2. This spark is not executed until a

further SparkDelay time has passed. Therefore on line 9, when we process G1 and i = 1 we add

the time SparkCost + SparkDelay to the parallel execution time so far. G1 will the create the

spark for G2 which costs G1 a further SparkCost time (lines 12–13). The third conjunct (G2) must

wait for the first conjunct to create the second and the second to create it and then SparkDelay,

so line 9 adds 2× (SparkDelay+ SparkCost) to the current parallel execution time. G2 does not

need to create any other sparks, so the cost on lines 12–13 is not applied.

The next overhead is on line 18, the cost of signalling a future. It is applied each time a future

is signalled and the result of applying it is factored into ProdT imeMap along with all other costs,

so that its indirect effects on later conjuncts are accounted for. A related pair of overheads are

accounted for on lines 22–24: WaitCost is the cost of a future wait/2 operation and is paid any

time any context waits on a future. ContextWakeupDelay is also used here; if a context is likely

to suspend because of a future then it will take some time between getting signalled and waking

up. Line 26 of the algorithm accounts for the BarrierCost overhead, which is paid at the end of

every parallel conjunct.

Throughout Chapter 3 we saw the problems that right recursion can create. These problems

were caused because the leftmost conjunct of a parallel conjunction will be executed by the con-

text that started the execution of the conjunction (the original context), and if the same context

does not execute the other conjuncts and those conjuncts take longer to execute than the left-

most one, the original context must be suspended. When this context is resumed, we must wait

ContextWakeupDelay before it can resume the execution of the code that follows the parallel

conjunction. We account for this overhead on lines 30–31. This requires knowing the cost of the

first conjunct FirstConjT ime, which is computed by code on lines 4 and 27–28.

There are two other important pieces of information that we compute, although neither are

shown in the algorithm. The first is “CPU utilisation”; it is the sum of all the chunks’ lenghts

which include the costs but not the delays. The second is the “dead time”: it is the sum of the

time spent waiting on each future plus the time that the original context spends waiting at the

barrier for the conjunction to finish. This represents the amount of time that contexts consume

memory without the contexts being actively used. We do not currently use either of these metrics

to make decisions about parallelisations, but they could be used to break ties between alternative

parallelisations with similar parallel speedups.

4.6 Choosing how to parallelise a conjunction

A conjunction with more than two conjuncts can be converted into several different parallel con-

junctions. Converting all the commas into ampersands (e.g. G1, G2, G3 into G1 & G2 & G3)

yields the most parallelism. Unfortunately, this will often be too much parallelism, because in

practice many conjuncts are unifications and arithmetic operations whose execution takes very few

instructions. Executing such conjuncts in their own threads costs far more in overheads than can

be gained from their parallel execution. To see just how big conjunctions can be, let us consider
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the quadratic equation example from Section 2.1, which we have repeated here. The quadratic

equation is often written as a single conjunct:

X = (-B + sqrt(pow(B, 2) - 4*A*C)) / (2*A)

Which is decomposed by the compiler into 12 conjuncts:

V_1 = 2, V_2 = pow(B, V_1), V_3 = 4,

V_4 = V_3 * A, V_5 = V_4 * C, V_6 = V_2 - V_5,

V_7 = sqrt(V_6), V_8 = -1, V_9 = V_8 * B,

V_10 = V_9 + V_7, V_11 = V_1 * A, X = V_10 / V_11

If the quadratic equation were involved in a parallel conjunction, we would not want to create 12

separate parallel tasks for it. Therefore in most cases, we want to transform sequential conjunctions

with n conjuncts into parallel conjunctions with k conjuncts where k < n. Each conjunct should

consist of a contiguous sequence of one or more of the original sequential conjuncts, effectively

partitioning the original conjuncts into groups.

Deciding how to parallelise something in this way can be thought of as choosing which of the

n−1 conjunction operators (‘,’) in an n-ary conjunction to turn into parallel conjunction operators

(‘&’). For example, G1, G2, G3 can be converted into any of:

G1 & (G2, G3);

(G1, G2) & G3; or

G1 & G2 & G3.
Our goal is to find the best parallelisation of a conjunction from among the various possible parallel

conjunctions. The solution space is as large as 2n−1, and as the quadratic equation example

demonstrates that n can be quite large even for simple expressions. The largest conjunction we

have seen and tried to parallelise contains about 150 conjuncts. This is in the Mercury compiler

itself.

The prerequisite for a profitable parallel conjunction is two or more expensive conjuncts (con-

juncts whose per-call cost is above a certain threshold) (Section 4.2). In such conjunctions we

create a list of goals from the first expensive conjunct to the last, which we dub the “middle

goals”. There are (possibly empty) lists of cheap goals before and after the list of middle goals.

Our initial search assumes that the set of conjuncts in the parallel conjunction we want to create is

exactly the set of conjuncts in the middle. A post-processing step then removes that assumption.

The initial search space is explored by Algorithm 4.4, which processes the middle goals. The

algorithm starts with an empty list as InitPartition, zero as InitT ime, and the list of middle

conjuncts as LaterConjs. InitPartition expresses a partition of an initial sub-sequence of the

middle goals into parallel conjuncts whose estimated execution time is InitT ime, and considers

whether it is better to add the next middle goal to the last existing parallel conjunct (Extend) (line

6), or to put it into a new parallel conjunct (AddNew) (line 7). The calls to find par time (lines

8 and 9) evaluate these two alternatives by estimating their parallel overlap using Algorithm 4.3.

If Extend is more profitable than AddNew, then the recursive call in line 11 searches for the best

parallel conjunction beginning with Extend; otherwise similar code is executed on line 26.

It is desirable to explore the full O(2n) solution space however doing so for large conjunctions

is infeasible. Therefore we compromise by using an algorithm that is initially complete, but can

switch into a greedy (linear) mode if the solution space is too large. Before the algorithm begins

we set the global variable NumEvals to zero. It counts how many overlap calculations have been



112 CHAPTER 4. OVERLAP ANALYSIS FOR DEPENDENT AND-PARALLELISM

Algorithm 4.4 Search for the best parallelisation

1: procedure find best partition(InitPartition, InitT ime, LaterConjs)
2: if empty(LaterConjs) then
3: return (InitT ime, InitPartition)
4: else
5: (Head, Tail)← deconstruct(LaterConjs)
6: Extend← all but last(InitPartition) ++ [last(InitPartition) ++ [Head]]
7: AddNew ← InitPartition ++ [Head]
8: ExtendT ime← find par time(Extend)
9: AddNewTime← find par time(AddNew)

10: NumEvals← NumEvals+ 2
11: if ExtendT ime < AddNewTime then
12: BestExtendSoln← find best partition(Extend, ExtendT ime, Tail)
13: (BestExT ime,BestExPartSet)← BestExtendSoln
14: if NumEvals < PreferLinearEvals then
15: BestAddNewSoln← find best partition(AddNew, AddNewTime, Tail)
16: (BestANTime,BestANPartSet)← BestAddNewSoln
17: if BestExT ime < BestANTime then
18: return BestExtendSoln
19: else if BestExT ime = BestANTime then
20: return (BextExT ime, choose(BestExPartSet, BestANPartSet)
21: else
22: return BestAddNewSoln
23: else
24: return BestExtendSoln
25: else
26: symmetric with the then case

27:

28: NumEvals← 0
29: BestPar ← find best partition([], 0, MiddleGoals)
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performed and if this reaches the threshold (PreferLinearEvals) then our algorithm explores

only the most profitable of the two alternatives at every choice point. If the threshold has not

been reached then the code on lines 15–22 is executed which explores the extensions of the less

profitable alternative (AddNew) as well. Symmetric code which explores Extend when it is the

least profitable belongs on line 26 and the lines omitted after it. The algorithm returns the best

of the two solutions, or chooses one of the solutions when they are of equal value on line 20.

Currently this choice is arbitrary, but it could be based on other metrics such as CPU utilisation.

If the threshold has been reached the least profitable alternative is not explored (line 24).

The actual algorithm in the Mercury system is more complex than Algorithm 4.4: our algorithm

will also test each partial parallelisation against the best solution found so far. If the expected

execution time for the candidate currently being considered is already greater than the fastest

existing complete parallelisation, we can stop exploring that branch; it cannot lead to a better

solution. This is a simple branch-and-bound algorithm.

There are some simple ways to improve this algorithm.

• Most invocations of find par time specify a partition that is an extension of a partition

processed in the recent past. In such cases, find par time should do its task incrementally,

not from scratch.

• Sometimes consecutive conjuncts do things that are obviously a bad idea to do in parallel,

such as building a ground term. The algorithm should treat these as a single conjunct.

• Take other metrics such as total CPU utilisation, dead time, or GC pressure into account,

at least by using it to break ties on parallel execution time.

• Also, the current implementation does not make an estimate of the minimum cost of the

work that is yet to be scheduled after the current point. This affects the amount of pruning

that the branch-and-bound code is able to achieve.

At the completion of the search, we select one of the equal best parallelisations, and post-process it

to adjust both edges. Suppose the best parallel form of the middle goals is P1 & . . . & Pp, where

each Pi is a sequential conjunction. We compare the execution time of P1 & . . . & Pp with that

of P1, (P2 & . . . & Pp). If the former is slower, which can happen if P1 produces its outputs at

its very end and the other Pi consume those outputs at their start, then we conceptually move P1

out of the parallel conjunction (from the “middle” part of the conjunction to the “before” part).

We keep doing this for P2, P3 et cetera, until either we find a goal worth keeping in the parallel

conjunction, or we run out of conjuncts. We also do the same thing at the other end of the middle

part. This process can shrink the middle part.

In cases where we do not shrink an edge, we can consider expanding that edge. Normally,

we want to keep cheap goals out of parallel conjunctions, since more conjuncts tends to mean

more shared variables and thus more synchronisation overhead, but sometimes this consideration

is overruled by others. Suppose the goals before P1 & . . . & Pp in the original conjunction were

B1, . . . , Bb and the goals after it A1, . . . , Aa, and consider A1 after Pp. If Pp finishes before the

other parallel conjuncts, then executing A1 just after Pp in Pp’s context may be effectively free:

the last context could still arrive at the barrier at the same time, but this way, A1 would have been

done by then. Now consider Bb before P1. If P1 finishes before the other parallel conjuncts, and

if none of the other conjuncts wait for variables produced by P1, then executing Bb in the same

context as P1 can be similarly free.
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main f
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i j

(a) j is called from two different ancestor contexts

main f
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i_par
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(b) j’s parallel version is a specialisation, which requires specialising i

Figure 4.10: Parallel specialisation

We loop from i = b down towards i = 1, and check whether including Bi, . . . , Bb at the start

of P1 is improvement. If not, we stop; if it is, we keep going. We do the same from the other end.

The stopping points of the loops of the contraction and expansion phases dictate our preferred

parallel form of the conjunction, which (if we shrunk the middle at the left edge and expanded it

at the right) will look something like B1, . . . , Bb, P1, . . . Pk, (Pk+1 & . . . & Pp−1 & (Pp, A1, . . . ,

Aj)), Aj+1, . . . , Aa. If this preferred parallelisation is better than the original sequential version

of the conjunction by at least 1% (a configurable threshold), then we include a recommendation

for its conversion to this form in the feedback file we create for the compiler.

4.7 Pragmatic issues

In this section we discuss several pragmatic issues with our implementation. We also discuss several

directions for further research.

4.7.1 Merging parallelisations from different ancestor contexts

We search the program’s call graph for parallelisation opportunities (Section 4.2). This means that

we may visit the same procedure multiple times from different ancestor contexts. In a different

context a procedure may have a different optimal parallelisation, or no profitable parallelisation.

Me must somehow resolve cases where there are multiple candidate parallelisations for the same

procedure.

At the moment, for any procedure and conjunction within that procedure which our analysis

indicates is worth parallelising in any context, we pick one particular parallelisation (usually there is

only one anyway), and transform the procedure accordingly. This gets the benefit of parallelisation

when it is worthwhile, but incurs its costs even in contexts when it is not.

In the future, we plan to use multi-version specialisation. For every procedure with different

parallelisation recommendations in different ancestor contexts, we intend to create a specialised

version for each recommendation, leaving the original sequential version. This will of course require
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the creation of specialised versions of its parent, grandparent etc procedures, until we get to an

ancestor procedure that can be used to separate the specialised version, or versions, from the

original versions. This is shown in Figure 4.10, in the figure j is being parallelised when it is

called from the main → f → h → i → j ancestor context, but not when it is called from the

main → f → g → i → j context. Therefore by specialising both j and i into new versions j par

and i par respectively and calling i par from h rather than i we can parallelise j only when it is

called from the correct ancestor context.

Each candidate parallel conjunction sent to the compiler includes a goal path and procedure;

this points to the procedure and conjunction within the procedure that we wish to parallelise.

When different conjunctions in the same procedure have parallelisation advice, we save all this

advice into the feedback file. When the compiler acts on this advice, it applies the parallelisations

deeper within compound goals first. This ensures that as we apply advice, the goal path leading to

each successive conjunction that we parallelise, still points to the correct conjunction. To ensure

that the compiler applies advice correctly, it attempts to identify the parallel conjunction in the

procedure’s body that the parallelisation advice refers to. It does this by comparing the goal

structure, and the calls within the procedure body to the goal structure and calls in the candidate

conjunction in the feedback data. It compares calls using the callee’s name and the names of some

of the variables in the argument list. Not all variables are used as many are named automatically

by other compiler transformations, the compiler knows which ones are automatically introduced by

other transformations. If any conjunction cannot be found, then the match fails and the compiler

skips that piece of advice and issues a warning.

4.7.2 Parallelising children vs ancestors

What happens when we decide that a conjunction that should be parallelised has an ancestor

that we decided should also be parallelised? This can happen both with an ancestor in the same

procedure (a compound goal in a parallel conjunction that also contains a parallel conjunction) or

a call from a parallel conjunction to the current procedure. In either case our options are:

1. parallelise neither,

2. parallelise only the ancestor,

3. parallelise only this conjunction, or

4. parallelise both

The first alternative (parallelise neither) has already been rejected twice, since we concluded

that (2) was better than (1) when we decided to parallelise the ancestor, and we concluded that

(3) was better than (1) when we decided to parallelise this conjunction.

Currently our system will parallelise both the ancestor and the current conjunction. Our system

will not explore parts of the call graph (and therefore conjunctions) when it thinks there is enough

parallelism in the procedure’s ancestors to occupy all the CPUs. In the future we could choose

among the three reasonable alternatives: we could evaluate the speedup from each of them, and just

pick the best. This is simple to do when both candidates are in the same procedure. When one of

the candidates is in an ancestor call we must also take into account the fact that for each invocation

of the ancestor conjunction, we will invoke the current conjunction many times. Therefore we will
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incur both the overheads and the benefits of parallelising the current conjunction many times. We

will be able to determine the actual number of invocations from the profile.

4.7.3 Parallelising branched goals

Many programs have code that looks like this:

( if ... then

...,

expensive_call_1(...),

...

else

...,

cheap_call(...),

...

),

expensive_call_2(...)

If the condition of the if-then-else succeeds only rarely, then the average cost of the if-then-else may

be below the threshold of what we consider to be an expensive goal. We therefore would not consider

parallelising the top-level conjunction (the conjunction of the if-then-else and expensive call 2);

this is correct as its overheads would probably outweigh its benefits.

In these cases we remember the expensive goal within the if-then-else so that when we see

expensive call 2 we virtually push expensive call 2 into both branches of the if-then-else and

test if it creates profitable parallelism in the branch next to expensive call 1. If we estimate

that this will create profitable parallelism then when we give feedback to the compiler we tell the

compiler to push expensive call 2 just as we have. Then during execution parallelism is only

used when the then branch of this if-then-else is executed.

( if ... then

...,

expensive_call_1(...),

...,

expensive_call_2(...)

else

...,

cheap_call(...),

...,

expensive_call_2(...)

)

This transformation is only applied when it does not involve reordering goals. For example, we

do not push expensive call 2 past other call in the following code:

( if ... then

...,

( if ... then

expensive_call_1(...),
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else

...

),

other_call(...),

else

...,

cheap_call(...),

...

),

expensive_call_2(...)

4.7.4 Garbage collection and estimated parallelism

We described the garbage collector’s effects on parallel performance in detail in Section 3.1. In

this section we will describe how it relates to automatic parallelism in particular.

Throughout this chapter we have measured the costs of computations as call sequence counts,

however this metric does not take into account memory allocations or collection. There is a fixed

(and usually small) limit on the number of instructions that the program can execute between

increments of the call sequence count (though the limit is program-dependent). There is no such

limit on the collector, which can be a problem. Since a construction unification does not involve a

call, our profiler considers its cost (in CSCs) to be zero. Yet if the memory allocation required by

a construction triggers a collection, then this nominally zero-cost action can actually take as much

time as many thousands of CSCs.

The normal way to view the time taken by a collection is to simply distribute it among the

allocations, so that one CSC represents the average time taken by the mutator between two calls

plus the average amortised cost of the collections triggered by the unifications between those calls.

For a sequential program, this view works very well. For a parallel program, it works less well,

because the performance of the mutator and the collector scale differently (Section 3.1).

We could take allocations into account in the algorithms above in a couple of different ways.

We could create a new unit for time that combines call sequence counts and allocations and use

this to determine how much parallelism we can achieve. At first glance allocations take time and

parallelising them against one another may be beneficial. Therefore we may wish to arrange parallel

conjunctions so that memory allocation is done in parallel. However this may lead to slowdowns

when there is too much parallel allocation. Memory can be allocated from the shared memory

pool or from thread local pools. Threads will try to allocate memory from their own local memory

pool first. This amortises the accesses to the shared memory pool across a number of allocations.

Therefore parallelising memory allocation will increase contention on the shared memory pool,

slowing the computation down. High allocation rates also correspond to high memory bandwidth

usage. Parallel computations with high memory bandwidth demands may exhaust the available

bandwidth, which will reduce the amount that parallelism can improve performance. Therefore,

if we use memory allocation information when estimating the benefit of parallelisation we must

weigh up these factors carefully.

There is also the consideration that with the Boehm-Demers-Weiser [14] a collection stops

the world, and the overheads of this stopping scale with the number of CPUs being used. The
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Version Sequential Parallel w/ N Engines
not TS TS 1 2 3 4

Raytracer
indep 14.7 16.9 16.9 (1.00) 16.9 (1.00) 17.0 (0.99) 17.0 (1.00)
naive - - 17.5 (0.97) 13.4 (1.26) 10.4 (1.62) 8.9 (1.90)
overlap - - 17.4 (0.97) 13.2 (1.28) 10.5 (1.61) 9.0 (1.88)

Raytracer w/ 16-row chunks
indep 14.9 17.8 17.9 (1.00) 18.0 (0.99) 18.0 (0.99) 18.1 (0.98)
naive - - 17.4 (1.02) 10.2 (1.75) 7.9 (2.26) 6.5 (2.73)
overlap - - 17.5 (1.02) 10.2 (1.75) 7.9 (2.27) 6.5 (2.73)

Right recursive dependent Mandelbrot
indep 15.2 15.1 15.1 (1.01) 15.2 (1.01) 15.2 (1.01) 15.2 (1.01)
naive - - 15.2 (1.01) 9.2 (1.66) 5.7 (2.69) 4.1 (3.76)
overlap - - 15.2 (1.01) 9.8 (1.56) 5.7 (2.66) 4.0 (3.85)

Matrix multiplication
indep 5.10 7.69 7.69 (1.00) 3.87 (1.99) 2.60 (2.96) 1.97 (3.90)
naive - - 7.69 (1.00) 3.87 (1.98) 2.60 (2.96) 1.97 (3.90)
overlap - - 7.69 (1.00) 3.87 (1.99) 2.60 (2.96) 1.97 (3.90)

Table 4.4: Automatic parallelism performance results

overheads of stopping include not just the direct costs of the interruption, but also indirect costs,

such as having to refill the cache after the collector trashes it.

4.8 Performance results

We tested our system on four benchmark programs: the first three are modified versions of the

raytracer and mandelbrot program from Chapter 3, the fourth is a matrix multiplication program.

The two versions of the raytracer and the mandelbrot program only have dependent parallelism

available. Mandelbrot uses the map foldl predicate in Figure 4.2. map foldl is used to iterate

over the rows of pixels in the image. Raytracer does not use map foldl, but does use a similar code

structure to perform a similar task. This similar structure is not an accident: many predicates

use this kind of code structure, partly because programmers in declarative languages often use

accumulators to make their loops tail recursive. The second raytracer program renders chunks of

16 rows at a time in each iteration of its render loop. This is not normally how a programmer

would write such a program; we have done this deliberately to aid a discussion below. Matrixmult

has abundant independent AND-parallelism.

We ran all four programs with one set of input parameters to collect profiling data, and with a

different set of input parameters to produce the timing results in the following table. All tests were

run on the same system as the benchmarks on Chapter 3, (the system is described on page 46).

Each test was executed 40 times, we give the reason for the high number of samples below.

Table 4.4 presents these results. Each group of three rows reports the results for one benchmark.

We auto-parallelised each program three different ways: executing expensive goals in parallel only

when they are independent (“indep”); even if they are dependent, regardless of how dependencies

affect the estimated available parallelism (“naive”); and even if they are dependent, but only

if they have good overlap (“overlap”). The next two columns give sequential execution times

of each program, the first of these is the runtime of the program when compiled for sequential
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execution, the second is its runtime when compiled for parallel execution but without enabling

auto-parallelisation. This shows the overhead of support for parallel execution when it does not

have any benefits. The last four columns give the runtime in seconds of each of these versions of

the program using one to four Mercury engines, with speedups compared to the sequential thread

safe version.

Compiling for parallelism but not using it often yields a slowdown, sometimes as high as 50%

(for matrixmult). (We observe such slowdowns for other programs as well.) There are two reasons

for this. The first reason is that the runtime system, and in particular the garbage collector, must

be thread safe. We tested how the garbage collector affected parallel performance extensively in

Section 3.1. The results shown in Table 4.4 were collected using one marker thread in the garbage

collector. The second reason for a slowdown in thread safe grades comes from how we compile

Mercury code. Mercury uses four of the x86 64’s six callee-save registers [81] to implement four of

the Mercury abstract machine registers4 (Section 2.2). The four abstract machine registers that

use real registers are: the stack pointer, the success instruction pointer (continuation pointer), and

the first two general purpose registers. The parallel version of the Mercury system needs to use a

real machine register to point to thread-specific data, such as each engine’s other abstract machine

registers (Section 2.2). On x86 64, this means that only the first abstract general purpose register

is implemented using a real machine register.

The parallelised versions running on one Mercury engine get only this slowdown, plus the

(small) additional overheads of all the parallel conjunctions which cannot get any parallelism.

However, when we move to two, three or four engines, many of the auto-parallelised programs do

get speedups.

In mandelbrot and both raytracers, all the parallelism is dependent, which is why indep gets

no speedup for them as it refuses to create dependent parallel conjunctions. The non-chunking

raytracer achieves speedups of 1.90 and 1.88 with four Mercury engines. We have found two reasons

for these poor results. The first reason is that, as we discussed in Section 3.1, the raytracer’s

performance is limited by how much time it spends in the garbage collector. The second reason is

the “right recursion problem” (see below). For mandelbrot, overlap gets a speedup that is as good

as one can reasonably expect: 3.85 on four engines. At first glance there appears to be a difference

in the performance of the naive and overlap versions of the mandelbrot program. However the

feedback data given to the compiler is the same in both cases, so the generated code will be the

same. Any apparent difference is due to the high degree of variability in the results, which is why

we executed each benchmark 40 times. This variability does not exist in the indep case, so we

believe it comes from how dependencies in parallel conjunctions are handled. The performance

is probably affected by Both the implementation of futures, and the “right recursion problem”

(Section 3.3), for which we introduce a work around in Section 3.5. The work around reorders

the conjuncts of a parallel conjunction to transform right recursion into left recursion. However

this cannot be done to dependent conjunctions as it would create mode incorrect code. If non-

chunking raytracer and mandelbrot do not reach the context limit, the garbage collector needs

to scan the large number of stacks created by right recursion. This means that parallel versions

of these programs put more demands on the garbage collector than their sequential equivalents.

Additionally, the more Mercury engines that are used, the more sparks are stolen and therefore

more contexts are created. Dependent parallel right recursive code will not scale to large numbers

4We only use four real registers because we may use only callee-save registers, and we do not want to over-
constrain the C compiler’s register allocator.
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of processors well. We fix the right recursion problem in Chapter 5, and provide better benchmark

results for explicitly-parallel versions of the non-chunking raytracer, mandelbrot and a dependent

version of matrixmult.

The version of the Mercury runtime system that we used in these tests does not behave exactly

as described in Section 3.6. In some cases the context limit is not used to reduce the amount

of memory consumed by contexts’ stacks. This means that right recursive dependent parallel

conjunctions can consume more memory (reducing performance), but they can also create more

parallel tasks (usually improving performance). This does not affect the analysis of how well

automatic parallelism works, it merely makes it difficult to compare these results with results in

the other chapters of the dissertation.

We verified the right recursion problem’s impact in garbage collection by testing the chunking

version of raytracer. This version renders 16 rows of the image on each iteration and therefore

creates fewer larger contexts. We can see that chunking raytracer performs much better than the

non-chunking raytracer when either naive or overlap parallelism is used. However it performs worse

without parallelism, including indep auto-parallelism (which cannot find any candidate parallel

conjunctions). We are not sure why it performs worse without parallelism; one idea is that the

garbage collector is affected somehow by how and where memory is allocated. These versions

spawn many fewer contexts, thus putting much less load on the GC. We know that this speed up

is due to the interaction of the right recursion problem and the GC because mandelbrot, which

creates just as many contexts but has a much lower allocation rate, already runs very optimally.

This shows that program transformations that cause more work to be done in each context are

likely to be optimisations, this includes the work in Chapter 5.

The parallelism in the main predicate of matrixmult is independent. Regardless of which parallel

cost calculation we used (naive, indep or overlap), the same feedback was sent to the compiler. All

versions of matrixmult were parallelised the same way and performed the same. This is normal for

such a small example with simple parallelism. (We compare this to a more complicated example of

the Mercury compiler below.) In an earlier version of our system, the version that was used in Bone,

Somogyi, and Schachte [19], the naive strategy parallelised matrixmult’s main loop differently, it

included an extra goal inside the parallel conjunct thereby creating a dependent parallel conjunction

even though the parallelisation was independent. Therefore in Bone, Somogyi, and Schachte [19],

naive performed worse than either indep or overlap.

Most small programs like these benchmarks have only one loop that dominates their runtime.

In all four of these benchmarks, and in many others, the naive and overlap methods will parallelise

the same loops, and usually the same way; they tend to differ only in how they parallelise code

that executes much less often (typically only once) whose effect is lost in the noise.

To see the difference between naive and overlap, we need to look at larger programs. Our

standard large test program is the Mercury compiler, which contains 69 conjunctions with two or

more expensive goals (goals with a per call cost of at least 10,000csc). Of these, 66 are dependent,

and only 34 have an overlap that leads to a predicted local speedup of more than 2%. Our

algorithms can thus prevent the unproductive parallelisation of 69 − 34 = 35 (51%) of these

conjunctions. Unfortunately, programs that are large and complex enough to show a performance

effect from this saving also tend to have large components that cannot be profitably parallelised

with existing techniques, which means that (due to Amdahl’s law) our autoparallelisation system

cannot yield overall speedups for them yet.



4.9. RELATED WORK 121

On the bright side, our feedback tool can process the profiles of small programs like these

benchmarks in less than a second and in only a minute or two even for much larger profiles. The

extra time taken by the Mercury compiler when it follows the recommendations in feedback files

is so small that it is not noticeable.

4.9 Related work

Mercury’s strong mode and determinism systems greatly simplify the parallel execution of logic

programs. As we discussed in Sections 1.1.2, 2.2 and 2.3, they make it easy to implement depen-

dent AND-parallelism efficiently. The mode system provides complete information allowing us to

identify shared variables at compile time.

Most research in parallel logic programming so far has focused on trying to solve the problems

of getting parallel execution to work well, with only a small fraction trying to find when parallel

execution would actually be worthwhile. Almost all previous work on automatic parallelisation

has focused on granularity control: reducing the number of parallel tasks while increasing their

size [76], and properly accounting for the overheads of parallelism itself [99]. Most of the rest

has tried to find opportunities to exploit independent AND-parallelism during the execution of

otherwise-dependent conjunctions [26, 87].

Our experience with our feedback tool shows that for Mercury programs, this is far from enough.

For most programs, it finds enough conjunctions with two or more expensive conjuncts, but almost

all are dependent, and, as we mention in Section 4.8, many of these have too little overlap to be

worth parallelising.

We know of only four attempts to estimate the overlap between parallel computations, and two

of these are in Mercury.

Tannier [105] attempted to automatically parallelise Mercury programs. Tannier’s approach was

to use the number of shared variables in a parallel conjunction as an analogue for how dependent

the conjunction was. While two conjuncts are indeed less likely to have useful parallel overlap

if they have more shared variables, we have found this heuristic too inaccurate to be useful.

Conjunctions with only a single variable can significantly vary in their amount of overlap,which we

have shown with the examples in this chapter. Analysing overlap properly is important as most

parallel conjunctions have very little overlap, making their parallelisation wasteful.

After Tannier’s work, we attempted to estimate overlap more accurately in our prior work

(Bone [17] 5). Compared with the work in this chapter, our earlier work performed a much

simpler analysis of the parallelism available in dependent parallel conjunctions. It could handle

only conjunctions with two conjuncts and a single shared variable. It also did not use the ancestor

context specific information provided by the deep profiler or perform the call graph traversal. The

call graph traversal is important as it allows us to avoid parallelising a callee when the caller

already provides enough parallelism. Most critically our earlier work did not attempt to calculate

the costs of recursive calls, and therefore failed to find any parallelism in any of the test programs

we used, including the raytracer that we use in this chapter.

Another dependency aware auto-parallelisation effort was in the context of speculative execution

in imperative programs. Given two successive blocks of instructions, von Praun, Ceze, and Caşcaval

[112] decide whether the second block should be executed speculatively based on the difference

5This earlier work was done as part of my honours project and contributed to the degree of Bachelor of Computer
Science Honours at The University of Melbourne.
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between the addresses of two instructions, one that writes a value to a register and one that reads

from that register. This only works when instructions take a bounded time to execute, but in the

presence of call instructions this heuristic will be inaccurate.

The most closely related work to ours is that of Pontelli, Gupta, Pulvirenti, and Ferro [92].

They generated parallelism annotations for the ACE AND/OR-parallel system. They recognised

the varying amounts of parallelism that may be available in dependent AND-parallel code. This

system used, much as we do, estimates of the costs of calls and of the times at which variables are

produced and consumed. It produced its estimates through static analysis of the program. This can

work for small programs, where the call trees of the relevant calls can be quite small and regular.

However, in large programs, the call trees of the expensive calls are almost certain to be both tall

and wide, with a huge gulf between best-case and worst-case behaviour. Pontelli et al.’s analysis is

a whole program analysis, which can also be troublesome for large programs. Our whole-program

analysis covers only the parts of the call graph that are deemed costly enough to be worth exploring,

which is another benefit of profiler feedback analysis. Pontelli et al.’s analysis of the variable use

times is incomplete when analysing branching code. We recognised the impact that diverging code

may have and created coverage profiling so that we could gather information and analyse diverging

code accurately [17]. Using profiling data is the only way for an automatic parallelisation system

to find out what the typical cost and variable use times are. Finally, Pontelli et al.’s overlap

calculation is pairwise: it considers the overlap of only two conjuncts at a time. We have found

that one must consider the overlap of the whole parallel conjunction, as a delay in the production

of a variable in one conjunct can affect the variable production times of other conjuncts. This is

also why we attempt to perform a complete search for the most optimal parallelisation. Changes

anywhere within a conjunction’s execution can affect other parts of the conjunction. For example,

the addition of an extra conjunct at the end of the conjunction can create a new shared variable

which increases the costs of earlier conjuncts.

Our system’s predictions of the likely speedup from parallelising a conjunction are also fallible,

since they currently ignore several relevant issues, including cache effects and the effects of bot-

tlenecks such as CPU-memory buses and stop-the-world garbage collection. However, our system

seems to be a sound basis for further refinements like these. In the future, we plan to support

parallelisation as a specialisation: applying a specific parallelisation only when a predicate is called

from a specific parent, grandparent or other ancestor. We also plan to modify our feedback tool

to accept several profiling data files, with a priority or (weighted) voting scheme to resolve any

conflicts. There is also potential further work in the handling of loops and recursion. We will talk

about this in Chapter 7 after we improve the efficiency of some loops in the next chapter.

This chapter is an extended and revised version of Bone et al. [19].



Chapter 5

Loop Control

In the previous chapter we described our system that uses profiling data to automatically parallelise

Mercury programs by finding conjunctions with expensive conjuncts that can run in parallel with

minimal synchronisation delays. This worked very well in some programs but not as well as we

had hoped for others, including the raytracer. This is because the way Mercury must execute

dependent conjunctions and the way programmers typically write logic programs are at odds. We

introduced this as “the right recursion problem” in Section 3.3.

In this chapter we present a novel program transformation that eliminates this problem in all

situations. The transformation has several benefits: First, it reduces peak memory consumption

by putting a limit on how many stacks a conjunction will need to have in memory at the same

time. Second, it reduces the number of synchronisation barriers needed from one per loop iteration

to one per loop. Third, it allows recursive calls inside parallel conjunctions to take advantage

of tail recursion optimisation. Finally, it obsoletes the conjunct reordering transformation. Our

benchmark results show that our new transformation greatly increases the speedups we can get

from parallelising Mercury programs; in one case, it changes no speedup into almost perfect speedup

on four cores.

We have written about the problem elsewhere in the dissertation, however we have found that

this problem is sometimes difficult to understand. Therefore the introduction section (Section 5.1)

briefly describes the problem, providing only the details necessary to understand and evaluate the

rest of this chapter. For more details about the problem see Sections 3.2 and 3.3, see also

Bone et al. [20], the paper on which this chapter is based. The rest of the chapter is organised as

follows. Section 5.2 describes the program transformation we have developed to control memory

consumption by loops. Section 5.3 evaluates how our system works in practice on some benchmarks.

Section 5.4 describes potential further work, and Section 5.5 concludes with discussion of related

work.

5.1 Introduction

The implementation of a parallel conjunction has to execute the first conjunct after spawning off

the later conjuncts. For dependent conjunctions, it cannot be done the other way around, because

only the first conjunct is guaranteed to be immediately executable: later conjuncts may need to

wait for data to be generated by earlier conjuncts. This poses a problem when the last conjunct

contains a recursive call:

123
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Figure 5.1: Linear context usage in right recursion

• the state of the computation up to this iteration of the loop is stored in the stack used by

the original computation’s context, whereas

• the state of the computation after this iteration of the loop is stored in the stack used by the

spawned off context.

We can continue the computation after the parallel conjunction only if we have both the original

stack and the results computed on the spawned-off stack. This means the original stack must be

kept in memory until the recursive call is done. However, there is no way to distinguish the first

iteration of a loop from the second, third etc, so we must preserve the original stack on every

iteration. This problem is very common, since in logic programming languages, tail recursive code

has long been the preferred way to write a loop. In independent code, we can workaround the

issue by reordering the conjuncts in a conjunction (see Section 3.5), but in dependent code this is

not possible.

We call this the “right recursion problem” because its effects are at their worst when the

recursive call is on the right hand side of a parallel conjunction operator. Unfortunately, this is a

natural way to (manually or automatically) parallelise programs that were originally written with

tail recursion in mind. Thus, parallelisation often transforms tail recursive sequential computations,

which run in constant stack space, into parallel computations that allocate a complete stack for

each recursive call and do not free them until the recursive call returns. This means that each

iteration effectively requires memory to store an entire stack, not just a stack frame.

Figure 5.1 shows a visualisation of this stack usage. At the top left, four contexts are created

to execute four iterations of a loop, as indicated by boxes. Once each of these iterations finishes,

its context stays in memory but is suspended, indicated by the long vertical lines. Another four

iterations of the loop create another four contexts, and so on. Later, when all iterations of the

loop have been executed, each of the blocked contexts resumes execution and immediately exits,

indicated by the horizontal line at the bottom of each of the vertical lines.

If we allow the number of contexts, and therefore their stacks, to grow unbounded, then the

program will very quickly run out of memory, often bringing the operating system to its knees.

This is why we introduced the context limit work around (described in Section 3.3), which can

prevent a program from crashing, but which limits the amount of parallel execution.

Our transformation explicitly limits the number of stacks allocated to recursive calls to a

small multiple of the number of available processors in the system. This transformation can also

be asked to remove the dependency of a parallel loop iteration on the parent stack frame from
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map_foldl_par(M, F, L, FutureAcc0, Acc) :-

lc_create_loop_control(LC),

map_foldl_par_lc(LC, M, F, L, FutureAcc0, Acc).

map_foldl_par_lc(LC, M, F, L, FutureAcc0, Acc) :-

(

L = [],

% The base case.

wait_future(FutureAcc0, Acc0),

Acc = Acc0,

lc_finish(LC)

;

L = [H | T],

new_future(FutureAcc1),

lc_wait_free_slot(LC, LCslot),

lc_spawn_off(LC, LCslot, (

M(H, MappedH),

wait_future(FutureAcc0, Acc0),

F(MappedH, Acc0, Acc1),

signal_future(FutureAcc1, Acc1),

lc_join_and_terminate(LCslot, LC)

)),

map_foldl_par_lc(LC, M, F, T,

FutureAcc1, Acc)

).

Figure 5.2: map foldl par after the loop control transformation

which it was spawned, allowing the parent frame to be reclaimed before the completion of the

recursive call. This allows parallel tail recursive computations to run in constant stack space. The

transformation is applied after the automatic parallelisation transformation, so it benefits both

manually and automatically parallelised Mercury code.

5.2 The loop control transformation

The main aim of loop control is to set an upper bound on the number of contexts that a loop may

use, regardless of how many iterations of the loop may be executed, without limiting the amount of

parallelism available. The loops we are concerned about are procedures that we call right recursive:

procedures in which the recursive execution path ends in a parallel conjunction whose last conjunct

contains the recursive call. A right recursive procedure may be tail recursive, or it may not be: the

recursive call could be followed by other code either within the last conjunct, or after the whole

parallel conjunction. Programmers have long tended to write loops whose last call is recursive in

order to benefit from tail recursion. Therefore, right recursion is very common; most parallel

conjunctions in recursive procedures are right recursive.

To guarantee the imposition of an upper bound on the number of contexts created during one

of these loops, we associate with each loop a data structure that has a fixed number of slots, and

require each iteration of the loop that would spawn off a goal to reserve a slot for the context of

each spawned-off computation. This slot is marked as in-use until that spawned-off computation

finishes, at which time it becomes available for use by another iteration.
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typedef struct MR_LoopControl_Struct MR_LoopControl;

typedef struct MR_LoopControlSlot_Struct MR_LoopControlSlot;

struct MR_LoopControlSlot_Struct

{

MR_Context *MR_lcs_context;

MR_bool MR_lcs_is_free;

};

struct MR_LoopControl_Struct

{

volatile MR_Integer MR_lc_outstanding_workers;

MR_Context* volatile MR_lc_master_context;

volatile MR_Lock MR_lc_master_context_lock;

volatile MR_bool MR_lc_finished;

/*

** MR_lc_slots MUST be the last field, since in practice, we treat

** the array as having as many slots as we need, adding the size of

** all the elements except the first to sizeof(MR_LoopControl) when

** we allocate memory for the structure.

*/

unsigned MR_lc_num_slots;

MR_LoopControlSlot MR_lc_slots[1];

};

Figure 5.3: Loop control structure

This scheme requires us to use two separate predicates: the first sets up the data structure

(which we call the loop control structure) and the second actually performs the loop. The rest

of the program knows only about the first predicate; the second predicate is only ever called

from the first predicate and from itself. Figure 5.2 shows what these predicates look like. In

Section 5.2.1, we describe the loop control structure and the operations on it; in Section 5.2.2, we

give the algorithm that does the transformation; in Section 5.2.3, we discuss its interaction with

tail recursion optimisation.

5.2.1 Loop control structures

The loop control structure, shown in Figure 5.3, contains the following fields:

MR lc slots is an array of slots, each of which contains a boolean and a pointer. The boolean says

whether the slot is free, and if it is not, the pointer points to the context that is currently

occupying it. When the occupying context finishes, the slot is marked as free again, but

the pointer remains in the slot to make it easier (and faster) for the next computation that

uses that slot to find a free context to reuse. Therefore we cannot encode the boolean in the

pointer being NULL or non-NULL. Although this is the most significant field in the structure

it is last so that the array can be stored with the data structure, and an extra memory

dereference can be avoided. This is the last field in the structure even though it is the most

significant field.
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MR lc num slots stores the number of slots in the array.

MR lc outstanding workers is the count of the number of slots that are currently in use.

MR lc master context is a possibly null pointer to the master context, the context that created

this structure, and the context that will spawn off all of the iterations. This slot will point

to the master context whenever it is sleeping, and will be NULL at all other times.

MR lc master context lock a mutex that is used to protect access to MR lc master context. The

other fields are protected using atomic instructions; we will describe them when we show the

code for the loop control procedures.

MR lc finished A boolean flag that says whether the loop has finished or not. It is initialised to

false, and is set to true as the first step of the lc finish operation.

The finished flag is not strictly needed for the correctness of the following operations, but it can

help the loop control code cleanup at the end of a loop more quickly. In the following description

of the primitive operations on the loop control structure, LC is a reference to the whole of a loop

control structure, while LCslot is an index into the array of slots stored within LC.

LC = lc create loop control() This operation creates a new loop control structure, and ini-

tialises its fields. The number of slots in the array in the structure will be a small multiple of

the number of cores in the system. The multiplier is configurable by setting an environment

variable when the program is run.

LCslot = lc wait free slot(LC) This operation tests whether LC has any free slots. If it does

not, the operation suspends until a slot becomes available. When some slots are available,

either immediately or after a wait, the operation chooses one of the free slots, marks it in

use, fills in its context pointer and returns its index. It can get the context to point to from

the last previous user of the slot, from a global list of free contexts, (in both cases it gets

contexts which have been used previously by computations that have terminated earlier), or

by allocating a new context (which typically happens only soon after startup).

lc spawn off(LC, LCslot, CodeLabel) This operation sets up the context in the loop control

slot, and then puts it on the global runqueue, where any engine looking for work can find it.

Setup of the context consists of initialising the context’s parent stack pointer to point to its

master’s stack frame, and the context’s resume instruction pointer to the value of CodeLabel.

lc join and terminate(LC, LCslot) This operation marks the slot named by LCslot in LC as

available again. It then terminates the context executing it, allowing the engine that was

running it to look for other work.

lc finish(LC) This operation is executed by the master context when we know that this loop will

not spawn off any more work packages. It suspends its executing context until all the slots

in LC become free. This will happen only when all the goals spawned off by the loop have

terminated. This is necessary to ensure that all variables produced by the recursive call that

are not signalled via futures have in fact had values generated for them. A variable generated

by a parallel conjunct that is consumed by a later parallel conjunct will be signalled via a

future, but if the variable is consumed only by code after the parallel conjunction, then it

is made available by writing its value directly in its stack slot. Therefore such variables can
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Figure 5.4: Loop control context usage

exist only if the original predicate had code after the parallel conjunction; for example, map

over lists must perform a construction after the recursive call. This barrier is the only barrier

in the loop and it is executed just once; in comparison, the normal parallel conjunction

execution mechanism executes one barrier in each iteration of the loop.

See Figure 5.2 for an example of how we use these operations. Note in particular that in this

transformed version of map foldl, the spawned-off computation contains the calls to M and F, with

the main thread of execution making the recursive call. This is the first step in preserving tail

recursion optimisation.

Figure 5.4 shows a visual representation of context usage when using loop control; it should

be compared with Figure 5.1. As before, this is how contexts are likely to be used on a four

processor system when using a multiplier of two so that eight slots are used; minor differences in

the execution times of each task and similar variables will mean that no execution will look as

regular as in the figures. In the Figure 5.4, we can see that a total of eight contexts are created

and four are in use at a time. When the loop begins, the master thread performs a few iterations,

executing lc wait free slot and lc spawn off. This creates all the contexts and adds them to

the runqueue, but only the first four contexts can be executed as there are only four processors.

Once those contexts finish their work, they execute lc join and terminate. Each call to lc -

join and terminate marks the relevant slot in the loop control structure as free, allowing the

master context to spawn off more work using the free slot. Meanwhile, the other four contexts are

now able to execute their work. This continues until the loop is finished, at which point lc finish

releases all the contexts.

5.2.2 The loop control transformation

Our algorithm for transforming procedures to use loop control is shown in Algorithms 5.1, 5.2

and 5.3.

Algorithm 5.1 shows the top level of the algorithm, which is mainly concerned with testing

whether the loop control transformation is applicable to a given procedure, and creating the inter-

face procedure if it is.

We impose conditions (1) and (2) because we need to ensure that every loop we start for

OrigProc is finished exactly once, by the call to lc finish we insert into its base cases. If

OrigProc is mutually recursive with some other procedure, then the recursion may terminate in

a base case of the other procedure, which our algorithm does not transform. Additionally, if
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Algorithm 5.1 The top level of the transformation algorithm

procedure loop control transform(OrigProc)
OrigGoal← body(OrigProc)
RecParConjs← set of parallel conjunctions in OrigGoal that contain recursive calls
if

OrigProc is directly but not mutually recursive (HO calls are assumed not to
create recursion), and

⊲ (1)

OrigGoal has at most one recursive call on all possible execution paths, and ⊲ (2)

OrigGoal has determinism det, and ⊲ (3)

no recursive call is within a disjunction, a scope that changes the determinism
of a goal, a negation, or the condition of a if-then-else, and

⊲ (4)

no member of RecParConjs is nested within another parallel conjunction, and ⊲ (5)

every recursive call is inside the last conjunct of a member of RecParConjs,
and

⊲ (6)

every execution path through one of these last conjuncts makes exactly one
recursive call

⊲ (7)

then
LC ← create new variable()
LCGoal← the call ‘lc create loop control(LC)’
LoopProcName← a new unique predicate name
OrigArgs← arg list(OrigProc)
LoopArgs← [LC] ++ OrigArgs
CallLoopGoal← the call ‘LoopProcName(LoopArgs)’
NewProcBody ← the conjunction ‘LCGoal, CallLoopGoal’
NewProc← OrigProc with its body replaced by NewProcBody

LoopGoal← create loop goal(OrigGoal, OrigProcName, LoopProcName,
RecParConjs, LC)

LoopProc← new procedure

(

LoopProcName(LoopArgs) :-

LoopGoal.

)

NewProcs← [NewProc, LoopProc]
else

NewProcs← [OrigProc]

return NewProcs
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Algorithm 5.2 Algorithm for transforming the recursive cases

procedure create loop goal(OrigGoal, OrigProcName, LoopProcName, RecParConjs,
LC)

LoopGoal← OrigGoal
for RecParConj ∈ RecParConjs do

RecParConj has the form ‘Conjunct1 & . . . & Conjunctn’ for some n
for i← 1 to n− 1 do ⊲ This does not visit the last goal in RecParConj

LCSloti ← create new variable()
WaitGoali ← the call ‘lc wait free slot(LC, LCSloti)’
JoinGoali ← the call ‘lc join and terminate(LC, LCSloti)’

SpawnGoali ← a goal that spawns off the sequential conjunction
‘Conjuncti, JoinGoali’ as a work package

Conjuncti ← the sequential conjunction ‘WaitGoali, SpawnGoali’

Conjunct′n ← Conjunctn
for each recursive call RecCall in Conjunct′n do:

RecCall has the form ‘OrigProcName(Args)’
RecCall′ ← the call ‘LoopProcName([LC] ++ Args)’
replace RecCall with RecCall′ in Conjunct′n

Replacement← the flattened form of the sequential conjunction
‘Conjunct′1, . . . , Conjunct′n’

replace RecParConj in LoopGoal with Replacement

LoopGoal′ ← put barriers in base cases(LoopGoal, RecParConjs, LoopProcName, LC)
return LoopGoal′

OrigProc has some execution path on which it calls itself twice, then the second call may continue

executing loop iterations after a base case reached through the first call has finished the loop.

We impose conditions (3) and (4) because the Mercury implementation does not support the

parallel execution of code that is not deterministic. We do not want a recursive call to be called

twice because some code between the entry point of OrigProc and the recursive call succeeded

twice, and we do not want a recursive call to be backtracked into because some code between the

recursive call and the exit point of OrigProc has failed. These conditions prevent both of those

situations.

We impose condition (5) because we do not want another instance of loop control, or an

instance of the normal parallel conjunction execution mechanism, to interfere with this instance of

loop control.

We impose condition (6) for two reasons. First, the structure of our transformation requires

right recursive code: we could not terminate the loop in base case code if the call that lead to

that code was followed by any part of an earlier loop iteration. Second, allowing recursion to

sometimes occur outside the parallel conjunctions we are trying to optimise would unnecessarily

complicate the algorithm. (We do believe that it should be possible to extend our algorithm to

handle recursive calls made outside of parallel conjunctions.)

We impose condition (7) to ensure that our algorithm for transforming base cases (Algo-

rithm 5.3) does not have to process goals that have already been processed by our algorithm

for transforming recursive calls (Algorithm 5.2).

If the transformation is applicable, we apply it. The transformed original procedure has only

one purpose: to initialise the loop control structure. Once that is done, it passes a reference to

that structure to LoopProc, the procedure that does the actual work.
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The argument list of LoopProc is the argument list of OrigProc plus the LC variable that holds

the reference to the loop control structure. The code of LoopProc is derived from the code of

OrigProc. Some execution paths in this code include a recursive call; some do not. The execution

paths that contain a recursive call are transformed by Algorithm 5.2; the execution paths that do

not are transformed by Algorithm 5.3.

We start with Algorithm 5.2. Due to condition (6), every recursive call in OrigGoal will be

inside the last conjunct a parallel conjunction, and the main task of create loop goal is to iterate

over and transform these parallel conjunctions. (It is possible that some parallel conjunctions do

not contain recursive calls; create loop goal will leave these untouched.)

The main aim of the loop control transformation is to limit the number of work packages

spawned off by the loop at any one time, in order to limit memory consumption. The goals we

want to spawn off are all the conjuncts before the final recursive conjunct. (Without loop control,

we would spawn off all the later conjuncts.) The first half of the main loop in create loop goal

therefore generates code that creates and makes available each work package only after it obtains

a slot for it in the loop control structure, waiting for a slot to become available if necessary. We

make the spawned-off computation free that slot when it finishes.

To implement the spawning off process, we extended the internal representation of Mercury

goals with a new kind of scope. The only one shown in the abstract syntax in Figure 2.1 was

the existential quantification scope (some [X1, . . . , Xn] G), but the Mercury implementation had

several other kinds of scopes already, though none of those are relevant for this dissertation. We

call the new kind of scope the spawn-off scope, and we make SpawnGoali be a scope goal of this

kind. When the code generator processes such scopes, it

• generates code for the goal inside the scope (which will end with a call to lc join and term-

inate),

• allocates a new label,

• puts the new label in front of that code,

• puts this labelled code aside so that later it can be added to the end of the current procedure’s

code, and

• inserts into the instruction stream a call to lc spawn off that specifies that the spawned-off

computation should start execution at the label of the set-aside code. The other arguments

of lc spawn off come from the scope kind.

Since we allocate a loop slot LCSlot just before we spawn off this computation, waiting for a slot

to become available if needed, and free the slot once this computation has finished executing, the

number of computations that have been spawned-off by this loop and which have not yet been

terminated cannot exceed the number of slots in the loop control structure.

The second half of the main loop in create loop goal transforms the last conjunct in the

parallel conjunction by locating all the recursive calls inside it and modifying them in two ways.

The first change is to make the call actually call the loop procedure, not the original procedure,

which after the transformation is non-recursive; the second is to make the list of actual parameters

match the loop procedure’s formal parameters by adding the variable referring to the loop control

structure to the argument list. Due to condition (6), there can be no recursive call in OrigGoal

that is left untransformed when the main loop of create loop goal finishes.
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Algorithm 5.3 Algorithm for transforming the base cases

procedure put barriers in base cases(LoopGoal, RecParConjs, LoopProcName, LC)
if LoopGoal is a parallel conjunction in RecParConjs then ⊲ case 1

LoopGoal′ ← LoopGoal
else if there no call to LoopProcName in LoopGoal then ⊲ case 2

FinishGoal← the call ‘lc finish(LC)’
LoopGoal′ ← the sequential conjunction ‘LoopGoal, F inishGoal’

else ⊲ case 3
switch goal type(LoopGoal) do

case ‘ite(C, T , E)’
T ′ ← put barriers in base cases(T , RecParConjs, LoopProcName, LC)
E′ ← put barriers in base cases(E, RecParConjs, LoopProcName, LC)
LoopGoal′ ← ‘ite(C, T ′, E′)’

case ‘switch(V , [Case1, . . . , CaseN ])’
for i← 1toN do

Casei ← ‘case(FunctionSymboli, Goali)’

Goal′i ← put barriers in base cases(Goali, RecParConjs, LoopProcName,
LC)

Case′i ← ‘case(FunctionSymboli, Goal′i)’

LoopGoal′ ← ‘switch(V , [Case′1, . . . , Case′N ])’

case ‘Conj1, . . .ConjN ’ ⊲ Sequential conjunction
i← 1
while Conji does not contain a call to LoopProcName do

i← i+ 1
end while
Conj′i ← put barriers in base cases(Conji, RecParConjs, LoopProcName, LC)
LoopGoal′ ← LoopGoal with Conji replaced with Conj′i

case ‘some(V ars, SubGoal)’ ⊲ Existential quantification

SubGoal′ ← put barriers in base cases(SubGoal, RecParConjs,
LoopProcName, LC)

LoopGoal′ ← ‘some(V ars, SubGoal′)’

case a call ‘ProcName(Args)’
if ProcName = OrigProcName then

LoopGoal′ ← the call ‘LoopProcName([LC] ++ Args)’
else

LoopGoal′ ← LoopGoal

return LoopGoal′
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In some cases, the last conjunct may simply be a recursive call. In some other cases, the last

conjunct may be a sequential conjunction consisting of some unifications and/or some non-recursive

calls as well as a recursive call, with the unifications and non-recursive calls usually constructing

and computing some of the arguments of the recursive call. And in yet other cases, the last conjunct

may be an if-then-else or a switch, possibly with other if-then-elses and/or switches nested inside

them. In all these cases, due to condition (7), the last parallel conjunct will execute exactly one

recursive call on all its possible execution paths.

The last task of create loop goal is to invoke the put barriers in base cases function that

is shown in Algorithm 5.3 to transform the base cases of the goal that will later become the body

of LoopProc. This function recurses on the structure of LoopGoal, as updated by the main loop

in Algorithm 5.2.

When put barriers in base cases is called, its caller knows that LoopGoal may contain the

already processed parallel conjunctions (those containing recursive calls), it may contain base cases,

or it may contain both. The main if-then-else in put barriers in base cases handles each of

these situations in turn.

If LoopGoal is a parallel conjunction that is in RecParConjs, then the main loop of create-

loop goal has already processed it, and due to condition (7), this function does not need to touch

it. Our objective in imposing condition (7) was to make this possible.

If, on the other hand, LoopGoal contains no call to LoopProc, then it did not have any recursive

calls in the first place, since (due to condition (6)) they would all have been turned into calls to

LoopProc by the main loop of create loop goal. Therefore this goal either is a base case of

LoopProc, or it is part of a base case. In either case, we add a call to lc finish(LC) after it. In

the middle of the correctness argument below, we will discuss why this is the right thing to do.

If both those conditions fail, then LoopGoal definitely contains some execution paths that

execute a recursive call, and may also contain some execution paths that do not. What we do in

that case (case 3) depends on what kind of goal LoopGoal is.

If LoopGoal is an if-then-else, then we know from condition (4) that any recursive calls in it

must be in the then part or the else part, and by definition the last part of any base case code in the

if-then-else must be in one of those two places as well. We therefore recursively process both the

then part and the else part. Likewise, if LoopGoal is a switch, some arms of the switch may execute

a recursive call and some may not, and we therefore recursively process all the arms. For both

if-then-elses and switches, if the possible execution paths inside them do not involve conjunctions,

then the recursive invocations of put barriers in base cases will add a call to lc finish at the

end of each execution path that does not make recursive calls.

What if those execution paths do involve conjunctions? If LoopGoal is a conjunction, then we

recursively transform the first conjunct that makes recursive calls, and leave the conjuncts both

before and after it (if any) untouched. There is guaranteed to be at least one conjunct that makes a

recursive call, because if there were not, the second condition would have succeeded, and we would

never get to the switch on the goal type. We also know at most one conjunct makes a recursive

call. If more than one did, then there would be an execution path through those conjuncts that

would make more than one recursive call, then condition (2) would have failed, and the loop control

transformation would not be applicable.

Correctness argument. One can view the procedure body, or indeed any goal, as a set of

execution paths that diverge from each other in if-then-elses and switches (on entry to the then or

else parts and the switch arms respectively) and then converge again (when execution continues
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after the if-then-else or switch). Our algorithm inserts calls to lc finish into the procedure body

at all the places needed to ensure that every non-recursive execution path executes such a call

exactly once, and does so after the last goal in the non-recursive execution path that is not shared

with a recursive execution path. These places are the ends of non-recursive then parts whose

corresponding else parts are recursive, the ends of non-recursive else parts whose corresponding

then parts are recursive, and the ends of non-recursive switch arms where at least one other switch

arm is recursive. Condition (4) tests for recursive calls in the conditions of if-then-elses (which are

rare in any case) specifically to make this correctness argument possible.

Note that for most kinds of goals, execution cannot reach case 3 in Algorithm 5.3. Unifications

are not parallel conjunctions and cannot contain calls, so if LoopGoal is a unification, we will

execute case 2. If LoopGoal is a first order call, we will also execute case 2, due to condition (6)

in Algorithm 5.1, all recursive calls are inside parallel conjunctions; since case 1 does not recurse,

we never get to those recursive calls. LoopGoal might be a higher order call. Although a higher

order call might create mutual recursion, any call to OrigProc will create a new loop control

object and execute its loop independently. This may not be optimal, but it will not cause the

transformation to create invalid code or create code that performs worse than Mercury’s normal

parallel execution mechanics. Therefore we treat higher order calls the same way that we treat plain

calls to procedures other than OrigProc. If LoopGoal is a parallel conjunction, then it is either

in RecParConj, in which case we execute case 1, or (due to condition (5)) it does not contain any

recursive calls, in which case we execute case 2. Condition (4) also guarantees that we will execute

case 2 if LoopGoal is a disjunction, negation, or a quantification that changes the determinism of

a goal by cutting away (indistinguishable) solutions. The only other goal type for which execution

may get to case 3 are quantification scopes that have no effect on the subgoal they wrap, whose

handling is trivial.

We can view the execution of a procedure body that satisfies condition (2) and therefore has

at most one recursive call on every execution path as a descent from a top level invocation from

another procedure to a base case, followed by ascent back to the top. During the descent, each

invocation of the procedure executes the part of a recursive execution path up to the recursive

call; during the ascent, after each return we execute the part of the chosen recursive execution

path after the recursive call. At the bottom, we execute exactly one of the non-recursive execution

paths.

In our case, conditions (5) and (6) guarantee that all the goals we spawn off will be spawned off

during the descent phase. When we get to the bottom and commit to a non-recursive execution

path through the procedure body, we know that we will not spawn off any more goals, which is

why we can invoke lc finish at that point. We can call lc finish at any point in LoopGoal

that is after the point where we have committed to a non-recursive execution path, and before the

point where that non-recursive execution path joins back up with some recursive execution paths.

The code at case 2 puts the call to lc finish at the last allowed point, not the first, or a point

somewhere in the middle. We chose to do this because after the code executing LoopProc has

spawned off one or more goals one level above the base case, we expect that other processors will

be busy executing those spawned off goals for rather longer than it takes this processor to execute

the base case. By making this core do as much useful work as possible before it must suspend to

wait for the spawned-off goals to finish, we expect to reduce the amount of work remaining to be

done after the call to lc finish by a small but possibly useful amount. lc finish returns after all

the spawned-off goals have finished, so any code placed after it (such as if lc finish were placed
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at the first valid point) would be executed sequentially after the loop; where it would definitely

add to the overall runtime. Therefore, we prefer to place lc finish as late as possible, so that

this code occurs before lc finish and is executed in parallel with the rest of the loop, where it

may have no effect on the overall runtime of the program; it will just put what would otherwise

be dead time to good use.

We must of course be sure that every loop, and therefore every execution of any base case

of LoopGoal, will call lc finish exactly once: no more, no less. (It should be clear that our

transformation never puts that call on an execution path that includes a recursive call.) Now any

non-recursive execution path through LoopGoal will share a (possibly empty) initial part and a

(possibly empty) final part with some recursive execution paths. On any non-recursive execution

path, put barriers in base cases will put the call to lc finish just before the first point where

that path rejoins a recursive execution path. Since LoopProc is det (condition (3)), all recursive

execution paths must consist entirely of det goals and the conditions of if-then-elses, and (due to

condition (4)) cannot go through disjunctions. The difference between a non-recursive execution

path and the recursive path it rejoins must be either that one takes the then part of an if-then-else

and the other takes the else part, or that they take different arms of a switch. Such an if-then-else

or switch must be det: if it were semidet, LoopProc would be too, and if it were nondet or

multi, then its extra solutions could be thrown away only by an existential quantification that

quantifies away all the output variables of the goal inside it. However, by condition (4), the part

of the recursive execution path that distinguishes it from a non-recursive path, the recursive call

itself cannot appear inside such scopes. This guarantees that the middle part of the non-recursive

execution path, which is not part of either a prefix or a suffix shared with some recursive paths,

must also be det overall, though it may have nondeterminism inside it. Any code put after the

second of these three parts of the execution path (shared prefix, middle, shared suffix), all three of

which are det, is guaranteed to be executed exactly once.

5.2.3 Loop control and tail recursion

When a parallel conjunction spawns off a conjunct as a work package that other cores can pick

up, the code that executes that conjunct has to know where it should pick up its inputs, where it

should put its outputs, and where it should store its local variables. All the inputs come from the

stack frame of the procedure that executes the parallel conjunction, and all the outputs go there

as well, so the simplest solution, and the one used by the Mercury system, is for the spawned-off

conjunct to do all its work in the exact same stack frame. Normally, Mercury code accesses stack

slots via offsets from the standard stack pointer. Spawned-off code accesses stack slots using a

special Mercury abstract machine register called the parent stack pointer, which the code that

spawns off goals sets up to point to the stack frame of the procedure doing the spawning. That

same spawning-off code sets up the normal stack pointer to point to the start of the stack in the

context executing the work package, so any calls made by the spawned-off goal will allocate their

stack frames in that stack, but the spawned-off conjunct will use the original frame in the stack of

the parent context.

This approach works, and is simple to implement: the code generator generates code for

spawned-off conjuncts normally, and then just substitutes the base pointer in all references to

stack slots. However, it does have an obvious drawback: until the spawned-off computation fin-

ishes execution, it may make references to the stack frame of the parallel conjunction, whose space
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therefore cannot be reused until then. This means that even if a recursive call in the last conjunct

of the parallel conjunction happens to be a tail call, it cannot have the usual tail call optimisation

applied to it.

Before this work, this did not matter, because the barrier synchronisation needed at the end

of the parallel conjunction (MR join and continue), which had to be executed at every level of

recursion except the base case, prevented tail recursion optimisation anyway. However, the loop

control transformation eliminates that barrier, replacing it with the single call to lc finish in the

base case. So now this limitation does matter in cases where all of the recursive calls in the last

conjunct of a parallel conjunction are tail recursive.

If at least one call is not tail recursive, then it prevents the reuse of the original stack frame, so

our system will still follow the scheme described above. However, if they all are, then our system

can now be asked to follow a different approach. The code that spawns off a conjunct will allocate

a frame at the start of the stack in the child context, and will copy the input variables of the

spawned-off conjunct into it. The local variables of the spawned-off goal will also be stored in this

stack frame. The question of where its output variables are stored is moot: there cannot be any

output variables whose stack slots would need to be assigned to.

The reason this is true has to do with the way the Mercury compiler handles synchronisation

between parallel conjuncts. Any variable whose value is generated by one parallel conjunct and

consumed by one or more other conjuncts in that conjunction will have a future created for it

(Section 2.3). The generating conjunct, once it has computed the value of the variable, will

execute future signal/2 on the variable’s future to wake up any consumers that may be waiting

for the value of this variable. Those consumers will get the value of the original variable from the

future, and will store that value in a variable that is local to each consumer. Since futures are

always stored on the heap, the communication of bindings from one parallel conjunct to another

does not go through the stack frame.

A variable whose value is generated by a parallel conjunct and is consumed by code after the

parallel conjunction does need to have its value put into its stack slot, so that the code after the

parallel conjunction can find it. However, if all the recursive calls in the last conjunct are in fact

tail calls, then by definition there can be no code after the parallel conjunction. Since neither

code later in the parallel conjunction, nor code after the parallel conjunction, requires the values

of variables generated by a conjunct to be stored in the original stack frame, storing it in the

spawned-off goal’s child stack frame is good enough.

In our current system, the stack frame used by the spawned-off goal has exactly the same layout

as its parent, the spawning-off goal. This means that in general, both the parent and child stack

frames will have some unused slots, slots used only in the other stack frame. This is trivial to

implement, and we have not found the wasted space to be a problem. This may be because we have

mostly been working with automatically parallelised programs, and our automatic parallelisation

tools put much effort into granularity control (Chapter 4): the rarer spawning-off a goal is, the less

the effect of any wasted space. However, if we ever find this to be an issue, squeezing the unused

stack slots out of each stack frame would not be difficult.

5.3 Performance evaluation

We have benchmarked our system with four different programs, three of which were used in earlier

chapters. All these programs use explicit parallelism.
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mandelbrot uses dependent parallelism using map foldl from Figure 2.7.

matrixmult multiplies two large matrices. It computes the rows of the result in parallel.

raytracer uses dependent parallelism and is tail recursive. Like mandelbrot, it renders the rows

of the generated image in parallel, but it does not use map foldl.

spectralnorm was donated by Chris King1. It computes the eigenvalue of a large matrix using

the power method. It has two parallel loops, both of which are executed multiple times.

Therefore, the parallelism available in spectralnorm is very fine-grained. Chris’ original

version uses dependent parallelism.

All these benchmarks have dependent AND-parallelism, but for two of the benchmarks, matrixmult

and spectralnorm, we have created versions that use independent AND-parallelism as well. The

difference between the dependent and independent versions is just the location of a unification that

constructs a cell from the results of two parallel conjuncts: the unification is outside the parallel

conjunction in the independent versions, while it is in the last parallel conjunct in the dependent

versions. The sequential versions of mandelbrot and raytracer can both use tail call optimisation

to run in constant stack space. This is not possible in the other programs without the last call

modulo constructor (LCMC) optimisation [94]. LCMC is not supported with tail recursion so we

have not used it.

We found that the independent spectralnorm benchmark performed poorly due to its fine

granularity and the overhead of notification. Therefore, we compiled the runtime system in such

a way so that notifications were not used to communicate the availability of sparks (Section 3.6).

Instead Mercury engines were configured to poll each other to find sparks to execute. This change

only affects the non-loop control tests. We ran each test of each program twenty times.

Tables 5.1 and 5.2 presents our memory consumption and timing results respectively. In both

tables, the columns list the benchmark programs, while the rows show the different ways the

programs can be compiled and executed.

In Table 5.1, each box has two numbers. The first reports the maximum number of contexts

alive at the same time, while the second reports the maximum number of megabytes ever used

to store the stacks of these contexts. In Table 5.2, each box has three numbers. The first is the

execution time of that benchmark in seconds when it is compiled and executed in the manner

prescribed by the row. The second and third numbers (the ones in parentheses) show respectively

the speedup this time represents over the sequential version of the benchmark (the first row), and

over the base parallel version (the second row). Some of the numbers are affected by rounding.

In both tables, the first row compiles the program without using any parallelism at all, ask-

ing the compiler to automatically convert all parallel conjunctions into sequential conjunctions.

Obviously, the resulting program will execute on one core.

The second row compiles the program in a way that prepares it for parallel execution, but it still

asks the compiler to automatically convert all parallel conjunctions into sequential conjunctions.

The resulting executables will differ from the versions in the first row in two main ways. First,

they will incur some overheads that the versions in the first row do not, overheads that are needed

to support the possibility of parallel execution. The most important of these overheads is that, as

described in Chapters 3 and 4, the runtime reserves a hardware register to point to thread specific

data and compiling the garbage collector and the rest of the runtime system for thread safety.

1Chris’ version was published at http://adventuresinmercury.blogspot.com/search/label/parallelization.

http://adventuresinmercury.blogspot.com/search/label/parallelization
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mandelbrot mmult-depi mmult-indep raytracer spectral-dep spectral-indep

seq 1 0.62 1 0.62 1 0.62 1 0.62 1 0.62 1 0.62
par, no & 1 0.62 1 0.62 1 0.62 1 0.62 1 0.62 1 0.62

par, &, 1c, nolc, c128 1 0.62 1 0.62 1 0.62 1 0.62 1 1.12 1 1.12
par, &, 1c, nolc, c512 1 0.62 1 0.62 1 0.62 1 0.62 1 1.12 1 1.12
par, &, 1c, lc1 2 1.25 2 1.25 n/a n/a 2 1.25 2 1.75 n/a n/a
par, &, 1c, lc2 3 1.88 3 1.88 n/a n/a 3 1.88 3 2.38 n/a n/a
par, &, 1c, lc4 5 3.12 5 3.12 n/a n/a 5 3.12 5 3.62 n/a n/a

par, &, 2c, nolc, c128 256 160.00 256 160.00 2 1.25 256 160.00 256 160.50 2 1.75
par, &, 2c, nolc, c512 506 316.78 1024 640.00 2 1.25 1024 640.03 1024 640.50 2 1.75
par, &, 2c, lc1 3 1.88 3 1.88 n/a n/a 4 2.50 3 2.38 n/a n/a
par, &, 2c, lc2 5 3.12 5 3.12 n/a n/a 6 3.75 5 3.62 n/a n/a
par, &, 2c, lc4 9 5.62 9 5.62 n/a n/a 10 6.25 9 6.12 n/a n/a

par, &, 3c, nolc, c128 384 240.00 384 240.00 3 1.88 384 240.00 384 240.50 3 2.38
par, &, 3c, nolc, c512 518 323.94 1183 739.53 3 1.88 1201 750.62 1536 960.50 3 2.38
par, &, 3c, lc1 4 2.50 4 2.50 n/a n/a 5 3.12 4 3.00 n/a n/a
par, &, 3c, lc2 7 4.38 7 4.38 n/a n/a 8 5.00 7 4.88 n/a n/a
par, &, 3c, lc4 13 8.12 13 8.12 n/a n/a 14 8.75 13 8.62 n/a n/a

par, &, 4c, nolc, c128 511 319.38 512 320.00 4 2.50 512 320.00 512 320.50 4 3.00
par, &, 4c, nolc, c512 529 330.78 1201 750.62 4 2.50 1201 750.62 2048 1280.50 4 3.00
par, &, 4c, lc1 5 3.12 5 3.12 n/a n/a 6 3.75 5 3.62 n/a n/a
par, &, 4c, lc2 9 5.62 9 5.62 n/a n/a 10 6.25 9 6.12 n/a n/a
par, &, 4c, lc4 17 10.62 17 10.62 n/a n/a 18 11.25 17 11.12 n/a n/a

Table 5.1: Peak number of contexts used, and peak memory usage for stacks, measured in megabytes
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mandelbrot mmult-dep mmult-indep raytracer spectral-dep spectral-indep

seq 15.25 (1.00, 0.99) 5.12 (1.00, 1.50) 5.12 (1.00, 1.50) 17.93 (1.00, 1.19) 12.76 (1.00, 1.12) 12.76 (1.00, 1.12)
par, no & 15.17 (1.01, 1.00) 7.70 (0.66, 1.00) 7.70 (0.66, 1.00) 21.27 (0.84, 1.00) 14.33 (0.89, 1.00) 14.33 (0.89, 1.00)

par, &, 1c, nolc, c128 15.24 (1.00, 1.00) 7.71 (0.66, 1.00) 7.70 (0.66, 1.00) 21.20 (0.85, 1.00) 14.51 (0.88, 0.99) 14.38 (0.89, 1.00)
par, &, 1c, nolc, c512 15.22 (1.00, 1.00) 7.71 (0.66, 1.00) 7.70 (0.66, 1.00) 21.23 (0.84, 1.00) 14.50 (0.88, 0.99) 14.38 (0.89, 1.00)
par, &, 1c, lc1 15.20 (1.00, 1.00) 7.71 (0.66, 1.00) n/a 21.49 (0.83, 0.99) 14.49 (0.88, 0.99) n/a
par, &, 1c, lc1, tr 15.20 (1.00, 1.00) n/a n/a 21.68 (0.83, 0.98) n/a n/a
par, &, 1c, lc2 15.73 (0.97, 0.96) 7.70 (0.66, 1.00) n/a 21.56 (0.83, 0.99) 14.52 (0.88, 0.99) n/a
par, &, 1c, lc2, tr 15.20 (1.00, 1.00) n/a n/a 21.44 (0.84, 0.99) n/a n/a
par, &, 1c, lc4 15.19 (1.00, 1.00) 7.70 (0.66, 1.00) n/a 21.37 (0.84, 1.00) 14.50 (0.88, 0.99) n/a
par, &, 1c, lc4, tr 16.70 (0.91, 0.91) n/a n/a 21.61 (0.83, 0.98) n/a n/a

par, &, 2c, nolc, c128 12.80 (1.19, 1.18) 6.92 (0.74, 1.11) 3.88 (1.32, 1.99) 23.66 (0.76, 0.90) 14.35 (0.89, 1.00) 7.28 (1.75, 1.97)
par, &, 2c, nolc, c512 7.70 (1.98, 1.97) 4.70 (1.09, 1.64) 3.91 (1.31, 1.97) 17.65 (1.02, 1.21) 14.12 (0.90, 1.01) 7.26 (1.76, 1.97)
par, &, 2c, lc1 7.63 (2.00, 1.99) 4.02 (1.27, 1.92) n/a 12.63 (1.42, 1.68) 7.31 (1.74, 1.96) n/a
par, &, 2c, lc1, tr 7.63 (2.00, 1.99) n/a n/a 12.75 (1.41, 1.67) n/a n/a
par, &, 2c, lc2 7.87 (1.94, 1.93) 3.86 (1.33, 2.00) n/a 13.94 (1.29, 1.53) 7.27 (1.76, 1.97) n/a
par, &, 2c, lc2, tr 7.95 (1.92, 1.91) n/a n/a 13.89 (1.29, 1.53) n/a n/a
par, &, 2c, lc4 7.71 (1.98, 1.97) 3.85 (1.33, 2.00) n/a 12.63 (1.42, 1.68) 7.27 (1.75, 1.97) n/a
par, &, 2c, lc4, tr 8.03 (1.90, 1.89) n/a n/a 12.75 (1.41, 1.67) n/a n/a

par, &, 3c, nolc, c128 9.06 (1.68, 1.68) 6.12 (0.84, 1.26) 2.69 (1.90, 2.86) 23.89 (0.75, 0.89) 14.26 (0.90, 1.01) 4.87 (2.62, 2.95)
par, &, 3c, nolc, c512 5.16 (2.96, 2.94) 2.96 (1.73, 2.61) 2.63 (1.95, 2.93) 12.88 (1.39, 1.65) 13.94 (0.92, 1.03) 4.91 (2.60, 2.92)
par, &, 3c, lc1 5.26 (2.90, 2.88) 2.60 (1.97, 2.96) n/a 9.50 (1.89, 2.24) 4.89 (2.61, 2.93) n/a
par, &, 3c, lc1, tr 5.18 (2.95, 2.93) n/a n/a 9.58 (1.87, 2.22) n/a n/a
par, &, 3c, lc2 5.26 (2.90, 2.88) 2.59 (1.98, 2.97) n/a 9.45 (1.90, 2.25) 4.87 (2.62, 2.94) n/a
par, &, 3c, lc2, tr 5.18 (2.94, 2.93) n/a n/a 9.56 (1.88, 2.23) n/a n/a
par, &, 3c, lc4 5.11 (2.99, 2.97) 2.60 (1.97, 2.97) n/a 9.48 (1.89, 2.24) 4.87 (2.62, 2.94) n/a
par, &, 3c, lc4, tr 5.47 (2.79, 2.78) n/a n/a 9.57 (1.87, 2.22) n/a n/a

par, &, 4c, nolc, c128 4.52 (3.38, 3.36) 5.36 (0.96, 1.44) 1.98 (2.58, 3.88) 24.32 (0.74, 0.87) 14.14 (0.90, 1.01) 3.71 (3.44, 3.87)
par, &, 4c, nolc, c512 3.90 (3.91, 3.89) 2.33 (2.20, 3.31) 2.00 (2.56, 3.85) 11.47 (1.56, 1.85) 13.81 (0.92, 1.04) 3.71 (3.44, 3.87)
par, &, 4c, lc1 3.84 (3.97, 3.95) 1.97 (2.60, 3.91) n/a 8.06 (2.22, 2.64) 3.72 (3.43, 3.85) n/a
par, &, 4c, lc1, tr 3.94 (3.88, 3.86) n/a n/a 8.08 (2.22, 2.63) n/a n/a
par, &, 4c, lc2 3.84 (3.97, 3.95) 1.96 (2.61, 3.92) n/a 8.03 (2.23, 2.65) 3.68 (3.47, 3.90) n/a
par, &, 4c, lc2, tr 3.89 (3.93, 3.90) n/a n/a 8.07 (2.22, 2.63) n/a n/a
par, &, 4c, lc4 3.85 (3.97, 3.94) 1.96 (2.61, 3.93) n/a 8.04 (2.23, 2.65) 3.77 (3.38, 3.80) n/a
par, &, 4c, lc4, tr 3.88 (3.93, 3.91) n/a n/a 8.09 (2.22, 2.63) n/a n/a

Table 5.2: Execution times measured in seconds, and speedups
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These overheads lead to slowdowns in most cases, even when using a single core for user code.

(The garbage collector uses one core in all of our tests.) However, the mandelbrot program speeds

up when thread safety is enabled; it does not do very much memory allocation and is therefore

affected less by the overheads of thread safety in the garbage collector. Its slight speedup may be

due to its different code and data layouts interacting with the cache system differently.

All the later rows compile the program for parallel execution, and leave the parallel conjunctions

in the program intact. They execute the program on 1 to 4 cores (‘1c’ to ‘4c’). The versions that

execute on the same number of cores differ from each other mainly in how they handle loops. The

rows marked ‘nolc’ are the controls. They do not use the loop control mechanism described in

this chapter; instead, they rely on the context limit. The actual limit is the number of engines

multiplied by a specified parameter, which we have set to 128 in ‘c128’ rows and to 512 in ‘c512’

rows. Although our code uses thread-safe mechanisms for counting the number of contexts in use,

when it checks this value against the limit it does not use a thread-safe mechanism. Therefore,

whilst the number of contexts in use can never be corrupted, it can be exceed the limit by about

one or two contexts. Since different contexts can have different sized stacks, the limit is only an

approximate control over memory consumption anyway, so this is an acceptable price to pay for

reduced synchronisation overhead.

The rows marked ‘lcN ’ do use our loop control mechanism, with the value of N indicating the

value of another parameter we specify when the program is run. When the lc create loop con-

trol instruction creates a loop control structure, it computes the number of slots to create in it,

by multiplying the configured number of Mercury engines (each of which can execute on its own

core) with this parameter. We show memory consumption and timing results for N = 1, 2 and 4.

The timing results for N = 1 and N = 4 are almost identical to those for N = 2. It seems that

as long as we put a reasonably small limit on the number of contexts a loop control structure can

use, speed is not much affected by the precise value of the limit.

The rows in Table 5.2 marked ‘lcN , tr’ are like the corresponding ‘lcN ’ rows, but they also

switch on tail recursion preservation in the two benchmarks (mandelbrot and raytracer) whose

parallel loops are naturally tail recursive. The implementation of parallelism without loop control

destroys this tail recursion, and so does loop control unless we ask it to preserve tail recursion. That

means that mandelbrot and raytracer use tail recursion in all the test setups except for the parallel,

non-loop control ones, and loop control ones without tail recursion. Since the other benchmarks

are not naturally tail recursive, they will not be tail recursive however they are compiled. There

are no such rows in Table 5.1 since the results in each ‘lcN , tr’ row would be identical to the

corresponding ‘lcN ’ row.

There are several things to note in Table 5.1. The most important is that when the programs

are run on more than one core, switching on loop control yields a dramatic reduction in the max-

imum number of contexts used at any one time, and therefore also in the maximum amount of

memory used by stacks. (The total amount of memory used by these benchmarks is approximately

the maximum of this number and the configured initial size of the heap.) This shows that we have

achieved our main objective. Without loop control, the execution of three of our four dependent

benchmarks (mandelbrot, matrixmult and raytracer) require the simultaneous existence of a con-

text for every parallel task that the program can spawn off. For example, mandelbrot generates

an image with 600 rows, so the original context can never spawn off more than 600 other contexts.

On one core, the ‘nolc’ versions spawn off sparks, but since there is no other engine to pick them

up, the one engine eventually picks them up itself, and executes them in the original context. By
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contrast, the ‘lcN ’ versions directly spawn off new contexts, not sparks. This avoids the overhead

of converting a spark to a context, but we can do this only because we know we will not create too

many contexts.

When executing on two or more cores, mandelbrot and raytracer use one more context that

one would expect. Before the compiler applies the loop control transformation, it adds the syn-

chronisation operations needed by dependent parallel conjunctions. As shown by Figure 2.9, this

duplicates the original procedure. Only the inner procedure is recursive, so the compiler performs

the loop control transformation only on it. The extra context is the conjunct spawned off by the

parallel conjunction in the outer procedure.

There are several things to note in Table 5.2 as well. The first is that in the absence of loop

control, increasing the per-engine context limit from 128 to 512 yields significant speedups for three

out of four the dependent benchmarks. Nevertheless, the versions with loop control significantly

outperform the versions without, even ‘c512’, for all these benchmarks except for mandelbrot.

On mandelbrot, ‘c512’ already gets a near-perfect speedup, yet loop control still gets a small

improvement. Thus on all our dependent benchmarks, switching on loop control yields a speedup

while greatly reducing memory consumption.

Overall, the versions with loop control get excellent speedups on three of the benchmarks:

speedups of 3.95, 3.92 and 3.90 on four CPUs for mandelbrot, matrixmult and spectralnorm,

respectively. The one apparent exception, raytracer, is very memory-allocation-intensive. In Sec-

tion 3.1 we showed that this can significantly reduce the benefit of parallel execution of Mercury

code, especially when the collector does not use parallelism itself. In we have observed nearly 45%

of a the raytracer’s runtime being used in garbage collection (Table 3.2): This means that parallel

execution can only speed up the remaining 55% of the program. Therefore the best speedup we can

hope for is (4× 0.55+ 0.45)/(0.55+ 0.45) ≈ 2.65, which our result of 2.65 reaches. It is unusual to

see results this close to their theoretical maximums; in this case the parallelisation of the runtime

may affect the garbage collector’s performance, which can affect the figures that we have used with

Amdahl’s law.

Note second that loop control is crucial for getting this kind of speedup, without wasting lots

of memory. On four cores, loop control raises the speedup compared to c128 from 3.36 to 3.95 for

mandelbrot, from 1.44 to 3.92 for matrixmult, from 0.87 to 2.65 for raytracer, and from 1.01 to

3.90 for spectralnorm.

Third, for the benchmarks that have versions using independent parallelism, the independent

versions are faster than the dependent versions without loop control, while there is no significant

difference between the speeds of the independent versions and the dependent loop control versions.

For matrix multiplication, the loop control dependent version is faster, but the difference is small.

While for spectral-norm, the independent version result falls within the range of loop control results.

This shows that on these benchmarks, loop control completely avoids the problems described at

the beginning of this chapter.

Fourth, preserving tail recursion has a mixed effect on speed: of the six relevant cases (man-

delbrot and raytracer on 2, 3 and 4 cores), one case gets a slight speedup, while the others get

slight slowdowns. Due to the extra copying required, this tilt towards slowdowns is to be expected.

However, the effect is very small: usually within 2%. The possibility of such slight slowdowns is an

acceptable price to pay for allowing parallel code to recurse arbitrarily deeply while using constant

stack space.
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5.4 Further work

There are a number of small improvements that could be made to improve loop control. As we

mentioned in Section 5.2.3, the allocation of stack slots in tail recursive code is rather naive. We

could perform better stack slot allocation for both the parent stack frame and the first stack frame

on the stack slot’s context. We could also change how stack slots are allocated in non-recursive

code. By allocating the slots that are shared between the parent and child computations into

separate parts of the same stack frame, we may be able to reduce false sharing. False sharing

normally occurs when two parallel tasks contend for access to a single cache-line sized area of

memory without actually using the data in that memory to communicate; this creates extra cache

misses that can be avoided by allocating memory differently.

Loop control allows the same small number of contexts to be used to execute a parallel loop.

However, futures are still allocated dynamically and are not re-used. We could achieve further

performance improvements by controlling the allocation and use of futures. This could reduce the

number of allocations of futures from num futures per level × num red levels to just a single

allocation, depending on how futures where used in the loop.

These changes are minor optimisations, and might only increase performance by a small frac-

tion; there are other areas of further work that could provide more benefit. For example, applying

a similar transformation to other parallel code patterns, such as right recursion or divide and con-

quer, could improve performance of code using those patterns. In some patterns this may require

novel transformations such as we have shown here, in others it may simply be the application of

loop control transformations such as those of Shen et al. [99]

5.5 Conclusion

Ever since the first parallel implementations of declarative languages in the 1980s, researchers

have known that getting more parallelism out of a program than the hardware could use can

be a major problem, because the excess parallelism brings no benefits, only overhead, and these

overheads could swamp the speedups the system would otherwise have gotten. Accordingly, they

have devised systems to throttle parallelism, keeping it at a reasonable level.

However, most throttling mechanisms we know of have been general in nature, such as granu-

larity control systems [66, 76, 99]. These have similar objectives, but use totally different methods:

restricting the set of places in a program where they choose to exploit parallelism, not changing

how they choose to exploit it.

We know of one system that tries to preserve tail recursion even when the tail comes from a

parallel conjunction. The ACE system [46] normally generates one parcall frame for each parallel

conjunction, but it will flatten two or more nested parcall frames into one if runtime determinacy

tests indicate it is safe to do so. While these tests usually succeed for loops, they can also succeed

for other code, and (unlike our system) the ACE compiler does not identify in advance the places

where the optimisation may apply. The other main difference from our system is the motivation:

the main motivation of this mechanism in the ACE system is neither throttling nor the ability to

handling unbounded input in constant stack space, but reducing the overheads of backtracking.

This is totally irrelevant for us, since our restrictions prevent any interaction between AND-parallel

code and code that can backtrack.
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The only work on specially loop-oriented parallelism in logic languages that we are aware of is

Reform Prolog [11]. This system was not designed for throttling either, but it is more general than

ours in one sense (it can handle recursion in the middle of a clause) and less general in other senses

(it cannot handle parallelism in any form other than loops, and it cannot execute one parallel loop

inside another). It also has significantly higher overheads than our system: it traverses the whole

spine of the data structure being iterated over (typically a list) before starting parallel execution;

in some cases it synchronises computations by busy waiting; and it requires variables stored on

the heap to have a timestamp. To avoid even higher overheads, it imposes the same restriction

we do: it parallelises only deterministic code (though the definition of “deterministic” it uses is

a bit different). Reform Prolog does not handle any other forms of parallelism, whereas Mercury

handles parallelism in various situations, and the loop control transformation simply optimises one

form of parallelism.

The only work on loop-oriented parallelism in functional languages we know of is Sisal [38].

It shares two of Reform Prolog’s limits: no parallelism anywhere except loops, and no nesting of

parallel computations inside one another. Since it was designed for number crunching on supercom-

puters, it had to have lower overheads than Reform Prolog, but it achieved those low overheads

primarily by limiting the use of parallelism to loops whose iterations are independent of each

other, which makes the problem much easier. Similarly, while ACE Prolog supports both AND-

and OR-parallelism, the only form of AND-parallelism it supports is independent.

Our system is designed to throttle loops with dependent iterations, and it seems to be quite

effective. By placing a hard bound on the number of contexts that may be needed to handle a

single loop, our transformation allows parallel Mercury programs to do their work in a reasonable

amount of memory, and since it does so without adding significant overhead, it permits them to

live up to their full potential. For one of our benchmarks, loop control makes a huge difference:

on four cores, it turns a speedup of 1.01 into a speedup of 3.90. It significantly improves speedups

on two other benchmarks, and it even helps the fourth and last benchmark, even though that was

already close to the maximum possible speedup.

The other main advantage of our system is that it allows procedures to keep exploiting tail

recursion optimisation (TRO). If TRO is applicable to the sequential version of a procedure, then

it will stay applicable to its parallel version. Many programs cannot handle large inputs without

TRO, so they cannot be parallelised at all without this capability. The previous advantage may

be specific to systems that resemble the Mercury implementation, but this should apply to the

implementation of every eager declarative language.

This chapter is an extended and revised version of Bone et al. [20].
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Chapter 6

Visualisation

The behaviour of parallel programs is even harder to understand than the behaviour of sequential

programs. Parallel programs may suffer from any of the performance problems afflicting sequential

programs, as well as from several problems unique to parallel systems. Many of these problems

are quite hard (or even practically impossible) to diagnose without help from specialised tools.

In this chapter we describe a proposal for a tool for profiling the parallel execution of Mercury

programs, a proposal whose implementation we have already started. This tool is an adaptation

and extension of the ThreadScope profiler that was first built to help programmers visualise the

execution of parallel Haskell programs.

The structure of this chapter is as follows. Section 6.1 describes three different groups of people,

Mercury programmers, runtime system implementors and automatic parallelism researchers. For

each group we describe how a visual profiler based on ThreadScope would benefit them. Section 6.2

gives a description of the ThreadScope tool, how it is used in Haskell, and how we can use it

for Mercury without any modifications. Section 6.3 describes how we modify and extended the

ThreadScope system to collect the kinds of data needed to more completely describe the parallel

execution of Mercury programs, while Section 6.4 describes how one can analyse that data to

yield insights that can be useful to our three audiences: application programmers, runtime system

implementors, and the implementors of auto-parallelisation tools. Section 6.5 shows some examples

of our work so far. Finally, Section 6.6 concludes with a discussion of related work.

6.1 Introduction

When programmers need to improve the performance of their program, they must first understand

it. The standard way to do this is to use a profiler. Profilers record performance data from

executions of the program, and give this data to programmers to help them understand how their

program behaves. This enhanced understanding then makes it easier for programmers to speed up

the program.

Profilers are needed because the actual behaviour of a program often differs from the behaviour

assumed by the programmer. This is true even for sequential programs. For parallel programs,

the gulf between human expectations and machine realities is usually even wider. This is because

every cause of unexpected behaviour for sequential programs is present in parallel programs as

well, while parallel programs also have several causes of their own.

145



146 CHAPTER 6. VISUALISATION

Consider a program containing a loop with many iterations in which the iterations do not

depend on one another and can thus be done in parallel. Actually executing every iteration in

parallel may generate an overwhelming number of parallel tasks. It may be that the average

amount of computation done by one of these tasks is less than the amount of work it takes to

spawn one of them off. In that case, executing all the iterations in parallel will increase overheads

to the point of actually slowing the program down, perhaps quite substantially. The usual way to

correct this is to use granularity control to make each spawned-off task execute not one but several

iterations of the loop, thus making fewer but larger parallel tasks. However, if this is done too

aggressively, performance may once again suffer. For example, there may be fewer tasks created

than the computer has processors, causing some processors to be idle when they could be used.

More commonly, the iterations of the loop and thus the tasks may each need a different amount of

CPU time. If there are eight processors and eight unevenly sized tasks, then some processors will

finish their work early, and be idle while waiting for the others.

All these problems can arise in programs with independent parallelism: programs in which

parallel tasks do not need to communicate. Communication between tasks makes this situation

even more complicated, especially when a task may block waiting for information from another

task. A task that blocks may in turn further delay other tasks that depend on data it produces.

Chains of tasks that produce and consume values from one another are common, Programmers

need tools to help them identify and understand performance problems, whether they result from

such dependencies or other causes.

Profiling tools that can help application programmers can also be very useful for the implemen-

tors of runtime systems. While optimising Mercury’s parallel runtime system (Chapter 3), we have

needed to measure the costs of certain operations and the frequency of certain behaviours. Some

examples are: when a piece of work is made available, how quickly can a sleeping worker-thread

respond to this request? When a task is made runnable after being blocked, how often will it be

executed on the same CPU that was previously executing it, so that its cache has a chance to be

warm? Such information from profiles of typical parallel programs can be used to improve the

runtime system, which can help improve the performance of all parallel programs.

A third category of people who can use profiling tools for parallel programs are researchers

working on automatic parallelisation tools (Chapter 4). Doing a good job of automatically paral-

lelising a program requires a cost-benefit analysis for each parallelism opportunity, which requires

estimates of both the cost and the benefit of each opportunity. Profiling tools can help researchers

calibrate the algorithms they use to generate estimates of both costs and benefits. We did not use

the work in this chapter to help us with these problems in Chapter 4, so using ThreadScope to

tune the work of Chapter 4 represents some potential further work.

As researchers working on the parallel implementation of Mercury, including automatic par-

allelism, we fall into all three of the above categories. We have long needed a tool to help us

understand the behaviour of parallel Mercury programs, of the parallel Mercury runtime system

and of our auto-parallelisation tool (Chapter 4), but the cost of building such a tool seemed daunt-

ing. We therefore looked around for alternative approaches. The one we selected was to adapt to

Mercury an existing profiler for another parallel system.

The profiler we chose was ThreadScope [63], a profiler built by the team behind the Glasgow

Haskell Compiler (GHC) for their parallel implementation of Haskell. We chose ThreadScope

because the runtime system it was designed to record information from has substantial similarities



6.2. EXISTING THREADSCOPE EVENTS 147

to the Mercury runtime system, because ThreadScope was designed to be extensible, and, like many

visualisation tools, it is extremely useful for finding subtle issues that cause significant problems.

6.2 Existing ThreadScope events

ThreadScope was originally built to help programmers visualise the parallel execution of Haskell

programs compiled with the dominant implementation of Haskell, the Glasgow Haskell Compiler

(GHC). The idea is that during the execution of a parallel Haskell program, the Haskell runtime

system writes time-stamped reports about significant events to a log file. The ThreadScope tool

later reads this log file, and shows the user graphically what each CPU was doing over time. The

diagrams it displays reveal to the programmer the places where the program is getting the expected

amount of parallelism, as well as the places where it is not.

We were able to adapt the ThreadScope system to Mercury for two main reasons. The first

is that the parallel implementations of Haskell and Mercury in GHC and mmc (the Melbourne

Mercury Compiler) are quite similar in several important respects, even though they use different

terms for (slightly different implementations of) the same concepts. For example, what Mercury

calls an engine GHC calls a capability, and what Mercury calls a context GHC calls a thread.

(Except where noted, we will continue to use Mercury terminology as we have done so far in

the dissertation.) Mercury and GHC both use sparks, although GHC’s sparks do not need to

be evaluated, and may be garbage collected. The second reason that we were able to adapt

ThreadScope to Mercury is that the ThreadScope log file format was designed to be extensible.

Each log file starts with a description of each kind of event that may occur in it. This description

includes three fields:

• the event’s id

• a string that describes the event to users and implementors,

• and the total size of the event, which may be variable.

The fields within the event and their sizes and meanings are established by convention. This means

that when the event has a variable size, only one of the fields may have a variable size, unless self-

describing fields or extra fields that specify the sizes of other fields are used. This description is

precise enough that tools can skip events that they do not understand, and process the rest.

Mercury is able to make use of a number of event types already supported by ThreadScope

and GHC, and in other cases we are able to add support for Mercury-specific event types to

ThreadScope. Here we introduce the events in the first category; the next section describes those

in the second category. Events of all types have a 64bit timestamp that records the time of their

occurrence, measured in nanoseconds. This unit illustrates the level of precision ThreadScope

aims for, although of course there is no guarantee that the system clock is capable of achieving it.

Implementors are free to choose which clock they use to timestamp events. The GHC implementors

use the gettimeofday(2) system call, and we use either gettimeofday(2) or the processors’ time

stamp counters (TSCs).

Most events in the log file are associated with an engine. To avoid having to include an engine

id with every event in the log file, the log file format groups sequences of events that are all from the

same engine into a block, and writes out the engine id just once, in a block header pseudo-event.

Since tools reading the log file can trivially remember the engine id in the last block header they
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have read, this makes the current engine id (the id of the engine in whose block an event appears)

an implicit parameter of most event types.

The event types supported by the original version of ThreadScope that are relevant to our work

are listed here.

STARTUP marks the beginning of the execution of the program, and records the number of

engines that the program will use.

SHUTDOWN marks the end of the execution of the program.

CREATE THREAD records the act of the current engine creating a context, and gives the id

of the context being created. (What Mercury calls a context Haskell calls a thread; the name

of the event uses Haskell terminology.) Context ids are allocated sequentially, but the id

cannot be omitted, since the runtime system may reuse the storage of a context after the

termination of the computation that has previously used it, and therefore by specifying the

id we can determine when a thread is reused.

RUN THREAD records the scheduling event of the current engine switching to execute a con-

text, and gives the id of the context being switched to.

STOP THREAD records the scheduling event of the current engine switching away from exe-

cuting a context. Gives the id of the context being switched from, as well as the reason for

the switch. The possible reasons include: (a) the heap is full, and so the engine must invoke

the garbage collector; (b) the context has blocked, and (c) the context has finished. GHC

uses many more reason values, but these are the only reasons that are applicable to our work.

The context id could be derived implicitly, but the convention that was established by the

GHC developers requires us to provide it.

THREAD RUNNABLE records that the current engine has made a blocked context runnable,

and gives the id of the newly-runnable context.

RUN SPARK records that the current engine is starting to run a spark that it retrieved from

its own local spark queue. Gives the id of the context that will execute the spark, although,

like STOP THREAD, this can be inferred by context. However the inference required is slightly

different between GHC and Mercury.

STEAL SPARK records that the current engine will run a spark that it stole from the spark

queue of another engine. Gives the id of the context that will execute the spark, although

again, this can be inferred by context. Also gives the id of the engine that the spark was

stolen from.

CREATE SPARK THREAD is slightly different in GHC and Mercury. In GHC this records

the creation of a worker context that runs a special routine that processes sparks in a loop;

this can be thought of as a worker context for executing sparks. In Mercury this event is

recorded when an engine wishes to execute a particular spark and needs a new context to

do it; the context may be used to execute subsequent sparks. The event gives the id of the

context. The context may be an existing context that is reused, but the event does not say

whether the context is new or reused. In most cases, that information is simply not needed,

but if it is, it can be inferred from context.
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GC START is used when the current engine has initiated garbage collection; control of the

engine has been taken away from the mutator. The garbage collection events in GHC are

much more complex. However, since Mercury uses the Boehm-Demers-Weiser conservative

garbage collector (Boehm GC) [14], we have much less insight into the garbage collector’s

(GC) behaviour, and thus fewer GC related events and simpler semantics.

GC END indicates when garbage collection has finished on the current engine; control of the

engine has been returned to the mutator.

The longer a parallel program being profiled runs, the more events it will generate. Long

running programs can generate enormous log files. To keep the sizes of log files down as much as

possible, events include only the information they have to. If some information about an event can

be inferred from information recorded for other events, then the design principles of ThreadScope

say that information should be inferred at analysis time rather than recorded at profiling runtime.

(The presence of context ids in RUN SPARK and STEAL SPARK events is considered a mistake [102],

since they are guaranteed to be the same as the id of the context already running on that engine

or the context id in the following CREATE SPARK THREAD event, but their removal is prevented by

backwards compatibility concerns.) In most cases, the required inference algorithm is quite simple.

For example, answering the question of whether the context mentioned by a CREATE SPARK THREAD

event is new or reused merely requires searching the part of the log up to that event looking for

mentions of the same context id. We have already seen how the engine id parameter missing from

most of the above events can be deduced from block headers.

6.3 New events

In order to support the profiling of parallel Mercury programs, we had to add new arguments to

two of the existing ThreadScope events. Originally, the RUN SPARK and STEAL SPARK events did not

specify the identity of the spark being run or stolen. This is not a problem for the Haskell version

of ThreadScope, since the implementors did not care about sparks’ identities [102]. However, we

do, since sparks correspond to conjuncts in parallel conjunctions, and we want to give to the user

not just general information about the behaviour of the program as a whole, but also about the

behaviour of individual parallel conjunctions, and of the conjuncts in them. We have therefore

added an id that uniquely identifies each spark as an additional argument of the RUN SPARK and

STEAL SPARK events. Note that CREATE SPARK THREAD does not need a spark id, since the only two

ways it can get the spark it converts into a context is by getting it from its own queue or from

the queue of another engine. A CREATE SPARK THREAD event will therefore always be preceded by

either a RUN SPARK event or a STEAL SPARK event, and the id of the spark in that event will be the

id of the spark being converted.

We have extended the set of ThreadScope event types to include several new types of events.

Most of these record information about constructs that do not exist in Haskell: parallel conjunc-

tions, conjuncts in those conjunctions, and futures. Some provide information about the behaviour

of Mercury engines that ThreadScope for Haskell does not need, either because that information

is of no interest, or because the information is of interest but it can be deduced from other events.

Even though the Haskell and Mercury runtime systems generate many of the same events, the

stream of these common events they generate do not necessarily obey the same invariants.
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However, most of the work we have done towards adapting ThreadScope to Mercury has been

in the modification of the parallel Mercury runtime system to generate all of the existing, modified

and new events when called for.

In the rest of this section, we report on the event types we have added to ThreadScope. In the

next section, Section 6.4, we will show how the old and new events can be used together to infer

interesting and useful information about the behaviour of parallel Mercury programs.

STRING records an association between a text string and an integer so that a string occurring

many times within a log file can be replaced with an integer. Making the log files shorter

and therefore not flushing them to disk as often.

START PAR CONJUNCTION records the fact that the current engine is about to start

executing a parallel conjunction. It identifies the parallel conjunction in two different ways.

The static id identifies the location of the conjunction in the source code of the program. The

dynamic id is the address of the barrier structure that all the conjuncts in the conjunction

will synchronise on when they finish. Note that barrier structures’ storage may be reused for

other objects, including other barriers, by later code, so these dynamic ids are not unique

across time, but they do uniquely identify a parallel conjunction at any given moment in

time. See the end of this section for a discussion of why we chose this design.

END PAR CONJUNCTION records the end of a parallel conjunction. It gives the dy-

namic id of the finishing conjunction. Its static id can be looked up in the matching

START PAR CONJUNCTION event.

CREATE SPARK records the creation of a spark for a parallel conjunct by the current engine.

It gives the id of the spark itself, and the dynamic id of the parallel conjunction containing

the conjunct. To keep the log file small, it does not give the position of the conjunct in the

conjunction. However, since in every parallel conjunction the spark for conjunct n+1 will be

created by the context executing conjunct n, and unless n = 1, that context will itself have

been created from the spark for conjunct n. (The first conjunct of a parallel conjunction is

always executed directly, without ever being represented by a spark.) This means that the

sparks for the non-first conjuncts will always be created in order, which makes it quite easy

to determine which spark represents which conjunct.

The id of a spark is an integer consisting of two parts: the first part is the id of the engine

that created the spark, and the second is an engine-specific sequence number, so that in

successive sparks created by the same engine, the second part will be 1, 2, 3 etc. This design

allows the runtime system to allocate globally unique spark ids without synchronisation.

END PAR CONJUNCT records that the current engine has finished the execution of a con-

junct in a parallel conjunction. It also gives the dynamic id of the parallel conjunction. Note

that there is no START PAR CONJUNCT event to mark the start of execution of any conjunct.

For the first conjunct, its execution will start as soon as the engine has finished recording

the START PAR CONJUNCTION event. The first thing the conjunct will do is create a spark

representing the second and later conjuncts (which above we informally referred to as the

spark for the second conjunct). The CREATE SPARK event records the id of the spark, then,

either the RUN SPARK event or STEAL SPARK event records which engine and context executes

the spark. If the engine does not yet have a context a CREATE SPARK THREAD event is posted
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that identifies the newly created context. RUN THREAD and STOP THREAD events also tell us

when that context is executing, and on which engine. The first thing the second conjunct

does is spawn off a spark representing the third and later conjuncts. By following these links,

a single forward traversal of the log file can find out, for each engine, which conjunct of which

dynamic parallel conjunction it is running at any given time (if in fact it is running any: an

engine can be idle, or it may be running code that is outside of any parallel conjunction).

When an engine records an END PAR CONJUNCT event, it can only be for the conjunct it is

currently executing.

FUTURE CREATE records the creation of a future by the current engine. It gives the name of

the variable the future is for, as well as the dynamic id of the future. It does not give the dy-

namic id of the parallel conjunction whose conjuncts the future is intended to synchronise, but

that can be determined quite easily: just scan forward for the next START PAR CONJUNCTION

event. The reason why this inference works is that the code that creates futures is only ever

put into programs by the Mercury compiler, which never puts that code anywhere except

just before the start of a parallel conjunction. If a parallel conjunction uses n futures, then

every one of its START PAR CONJUNCTION events will be preceded by n FUTURE CREATE events,

one for each future.

The dynamic id of the future is its address in memory. This has the same reuse caveat as

the dynamic ids of parallel conjunctions.

FUTURE SIGNAL records that code running on the current engine has signalled the availabil-

ity of the value of the variable protected by a given future. The event provides the id of the

future. If another conjunct is already waiting for the value stored in this future, then its

context is now unblocked.

FUTURE WAIT NO SUSPEND records that the current engine retrieved the value of the

future without blocking. Gives the id of the future. The future’s value was already available

when the engine tried to wait for the value of the future, so the context running on the

current engine was not blocked.

FUTURE WAIT SUSPEND records that the current engine tried to retrieve the value of a

future, but was blocked. Gives the id of the future. Since the future’s value was not already

available, the current context has been be suspended until it is.

We have added a group of four event types that record the actions of engines that cannot

continue to work on what they were working before, either because the conjunct they were executing

finished, or because it suspended.

TRY GET RUNNABLE CONTEXT records when the engine is checking the global run

queue for a context to execute.

TRY GET LOCAL SPARK records that this engine is attempting to get a spark from its own

deque.

TRY STEAL SPARK records that this engine is attempting to steal a spark from another

engine.

ENGINE WILL SLEEP records that the engine is about to sleep. The next event from this

engine will be from when it is next awake.
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The idea is that an idle engine can look for work in three different places: (a) the global runnable

context queue, (b) its own local spark queue, and (c) another engine’s spark queue. An idle engine

will try these in some order, the actual order depending on the scheduling algorithm. The engine

will post the try event for a queue before it actually looks for work in that queue. If one of the

tests is successful, the engine will post a START THREAD event, a RUN SPARK event or a STEAL SPARK

event respectively. If one of the tests fails, the engine will go on the next. If it does not find work

in any of the queues, it will go to sleep after posing the ENGINE WILL SLEEP event.

This design uses two events to record the successful search for work in a queue: TRY GET RUNN-

ABLE CONTEXT and START THREAD, TRY GET LOCAL SPARK and RUN SPARK, or TRY STEAL SPARK and

STEAL SPARK. This may seem wasteful compared to using one event, but this design enables us to

measure several interesting things:

• how quickly a sleeping engine can wake up and try to find work when work is made available

by a CREATE SPARK and or CONTEXT RUNNABLE event;

• how often an engine is successful at finding work;

• when it is successful, how long it takes an engine to find work and begin its execution;

• when it is unsuccessful, how long it takes to try to find work from other sources, fail, and

then to go to sleep.

As we mentioned above, using the address of the barrier structure as the dynamic id of the

parallel conjunction whose end the barrier represents and using the address of the future structure

as the dynamic id of the future are both design choices. The obvious alternative would be to give

them both sequence numbers using either global or engine-specific counters. However, this would

require adding a field to both structures to hold the id, which costs memory, and filling in the field,

which costs time. Both these costs would be incurred by the program execution whose performance

we are trying to measure, interfering with the measurement itself. While such interference cannot

be avoided (writing events out to the log file also takes time), we nevertheless want to minimise it

if at all possible. In this case, it is possible: the addresses of the structures are trivially available,

and require no extra time or space during the profiled run.

The tradeoff is that if an analysis requires globally unique dynamic ids for parallel conjunctions

or for futures, and most analyses do, then it needs to ensure that a pre-pass has been run over the

log file. This pre-pass would maintain a map from future ids to a pair containing an active/inactive

flag, and a replacement id, and another map from dynamic conjunction ids to a tuple containing an

active/inactive flag, a replacement id, and a list of future ids. When the pre-pass sees a dynamic

conjunction id or future id in an event, it looks it up in the relevant table. If the flag says the id

is active, it replaces the id with the replacement. If the flag says the id is inactive, it gets a new

replacement id (e.g. by incrementing a global counter), and sets the flag to active. If the event

is a FUTURE CREATE event, the pre-pass adds the future’s original id to a list. If the event is a

START PAR CONJUNCTION event, it copies this list to the conjunction’s entry, and then clears the

list. If the event is an END PAR CONJUNCTION event, which ends the lifetime not only of the parallel

conjunction but also of all futures created for that conjunction, the pre-pass sets to inactive that

flags of both the conjunction itself and the futures listed in its entry.

This algorithm consistently renames apart the different instances of the same id, replacing

them with globally unique values. Its complexity can be close to linear, provided the maps are
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implemented using a suitable data structure, such as a hash table. This transformation does not

even need an extra traversal of the log file data. The ThreadScope tool must traverse the log file

anyway when it gets ready to display its contents, and this transformation can be done as part of

that traversal. The extra cost is therefore quite small.

6.4 Deriving metrics from events

ThreadScope is primarily used to visualise the execution of parallel programs. However, we can

also use it, along with our new events, to calculate and to present to the user a number of different

metrics about the execution of parallel Mercury programs. The GHC developers have indepen-

dently1 recognised this need, and have created alternative views within the ThreadScope GUI to

present textual information such as reports of these metrics. In our rudimentary prototype of how

these metrics could be calculated we used a command line driven console interface. (Some parts

of ThreadScope are implemented as a library, allowing the development of different independent

tools.) Some of the metrics are of interest only to application programmers, or only to runtime

system implementors, or only to auto-parallelisation tool implementors, but several are useful to

two or even all three of those groups. Also, metrics can be organised by their subject, whether that

is:

• the whole program,

• an engine,

• a parallel conjunction,

• a parallel conjunct,

• a future.

We discuss our proposed metrics in that order; we then discuss how we intend to present them to

users.

6.4.1 Whole program metrics

CPUs over time is the number of CPUs being used by the program at any given time. It is

trivial to scan all the events in the trace, keeping track of the number of engines currently being

used, each of which corresponds to a CPU. The resulting curve tells programmers which parts of

their program’s execution is already sufficiently parallelised, which parts are parallelised but not

yet enough to use all available CPUs, and which parts still have no parallelism at all. They can

then focus their efforts on the latter. The visualisation of this curve is already implemented in

ThreadScope [63].

GC stats is the number of garbage collections, and the average, minimum, maximum and

variance of the elapsed time taken by each collection. Boehm GC supports parallel marking using

GC-specific helper threads rather than the OS threads that run Mercury engines. Therefore, even

when parallel marking is used, we can only calculate the elapsed time used by garbage collection,

and not the CPU time used by garbage collection. The elapsed time of each garbage collection is

the interval between pairs of GC START and GC END events.

1The GHC developers added the alternative views to ThreadScope after we published the paper on which this
chapter is based [18].
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Mutator vs GC time is the fraction of the program’s runtime used by the garbage collector.

We calculate this by summing the times between pairs of GC START and GC END events, and dividing

the result by the program’s total runtime. (Both sides of the division refer to elapsed time, not

CPU time.) Due to Amdahl’s law [4], the fraction of time spent in garbage collection limits the best

possible speedup we can get for the program as a whole by parallelising the mutator. For example,

if the program spends one third of its time doing GC (which unfortunately actually happens for

some parallel programs), then no parallelisation of the program can yield a speedup of more than

three, regardless of the number of CPUs available.

Nanose
s per 
all is the average number of nanoseconds between successive procedure calls.

The Mercury deep profiler (for sequential programs) [32] (Section 2.4.1), which has nothing to do

with ThreadScope, measures time in call sequence counts (CSCs); the call sequence counter is

incremented at every procedure call. It does this because there is no portable, or even semi-

portable way to access any real-time clocks that may exist on the machine, and even the non-

portable method on x86 machines (the RDTSC instruction) is too expensive for it. (The Mercury

sequential profiler needs to look up the time at every call, which in typical programs will happen

every couple of dozen instructions or so. The Mercury runtime support for ThreadScope needs to

look up the time only at each event, which occur much less frequently.)

The final value of the call sequence counter at the end of a sequential execution of a program

gives its length in CSCs; say n CSCs. When a parallelised version of the same program is executed

on the same data under ThreadScope, we can compute the total amount of user time taken

by the program on all CPUs; say m nanoseconds. The ratio n/m gives the average number of

nanoseconds in the parallel execution of the program per CSC in its sequential execution. This

is useful information, because our automatic parallelisation system uses CSCs, as measured by

the Mercury sequential profiler, as its unit of measurement of the execution time of both program

components and system overheads. Using this scale, we can convert predictions about time made

by the tool from being expressed in CSCs to being expressed in nanoseconds, which is an essential

first step in comparing them to reality.

Contexts allo
ated is the number of contexts allocated at any given time; it includes

contexts that are running, runnable and blocked.

Contexts runnable is the number of contexts that are on the global context run queue at

any given time.

6.4.2 Per engine metrics

Sparks available is the number of sparks available for execution at any given time. Since the time

of publishing Bone and Somogyi [18] the GHC developers added similar metrics to ThreadScope.

Their metrics are more complicated as their spark implementation is more complicated. Their

implementation introduces a new event that provides summary data just for this purpose; by

comparison our spark events provide more detail as we know more accurately when each spark

event occurred. We wish to measure the number of sparks available on each Mercury engine’s

deque at any given time. This can be done by maintaining a counter for each engine, incrementing

it each time that engine uses the CREATE SPARK event, and decrementing it whenever the engine

uses a RUN SPARK event or another engine uses a STEAL SPARK event for a spark on this engine’s

deque.
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6.4.3 Conjunction specific metrics

Par
onj time is the time taken by a given parallel conjunction. For each dynamic parallel

conjunction id that occurs in the trace, it is easy to compute the difference between the times at

which that parallel conjunction starts and ends, and it is just as trivial to associate these time

intervals with the conjunction’s static id. From this, we can compute, for each parallel conjunction

in the program that was actually executed, both the average time its execution took, and the

variance in that time. This information can then be compared, either by programmers or by

automatic tools, with the sequential execution time of that conjunction recorded by Mercury’s

deep profiler, to see whether executing the conjunction in parallel was a good idea or not, provided

that the two measurements are done in the same units. At the moment, they are not, but as we

discussed above, CSCs can be converted to nanoseconds using the Nanosecs per call metric.

Par
onj runnable self is the number of CPUs that can be used by a given parallel con-

junction. For each dynamic parallel conjunction id that occurs in the trace, we can divide the time

between its start and end events into blocks, with the blocks bounded by the CREATE SPARK THREAD

and STOP THREAD events for its conjuncts, and the FUTURE WAIT SUSPEND and FUTURE SIGNAL

events of the futures used by those conjuncts. We can then compute, for each of these blocks,

the number of runnable tasks that these conjuncts represent. From this we can compute the his-

tory of the number of runnable tasks made available by this dynamic conjunction. We can derive

the maximum and the time-weighted average of this number, and we can summarise those across

all dynamic instances of a given static conjunction.

Consider a conjunction with n conjuncts. If it has a maximum number of runnable tasks

significantly less than n, this is a sign that the parallelism the programmer aimed for could not be

achieved. If instead the average but not the maximum number of runnable tasks is significantly

less than n, this suggests that the parallelism the programmer aimed for was achieved, but only

briefly. The number of runnable tasks can drop due to either a wait operation that suspends or

the completion of a conjunct. Both dependencies among conjuncts and differences in the execution

times of the conjuncts limit the amount of parallelism available in the conjunction. The impact

of the individual drops on the time-weighted average shows which effects are the most limiting in

any given parallel conjunction.

Par
onj runnable self and des
endants is the number of CPUs that can be used by

a given parallel conjunction and its descendants. This metric is almost the same as Parconj

runnable self, but it operates not just on a given dynamic parallel conjunction, but also on

the parallel conjunctions spawned by the call-trees of its conjuncts as well. It takes their events

into account when it divides time into blocks, and it counts the number of runnable tasks they

represent.

The two metrics, Parconj runnable self and Parconj runnable self and descendants,

can be used together to see whether the amount of parallelism that can be exploited by the two

parallel conjunctions together is substantially greater than the amount of parallelism that can be

exploited by just the outer parallel conjunction alone. If it is, then executing the inner conjunction

in parallel is a good idea; if it is not, then it is a bad idea.

If the outer and inner conjunction in the dynamic execution come from different places in the

source code, then acting on such conclusions is relatively straightforward. If they represent different

invocations of the same conjunction in the program, which can happen if one of the conjuncts



156 CHAPTER 6. VISUALISATION

contains a recursive call, then acting on such conclusions will typically require the application of

some form of runtime granularity control.

Par
onj running self is the number of CPUs that are actually used by a given parallel

conjunction. This metric is computed similarly to Parconj runnable self, but it does not

count a runnable conjunct until gets to use a CPU, and stops counting a conjunct when it stops

using the CPU (when it blocks on a future, and when it finishes).

Obviously, Parconj running self can never exceed Parconj runnable self for any parallel

conjunction at any given point of time. However, one important difference between the two metrics

is that Parconj running self can never exceed the number of CPUs on the system either. If

the maximum value of Parconj runnable self for a parallel conjunction does not exceed the

number of CPUs, then its Parconj running self metric can have the same value as its Parconj

runnable self metric, barring competition for CPUs by other parallel conjunctions (see later)

or by the garbage collector.

On the other hand, some conjunctions do generate more runnable tasks than there are CPUs.

In such cases, we want the extra parallelism that the system hardware cannot accommodate in the

period of peak demand for the CPU to “fill in” later valleys, periods of time when the conjunction

demands less than the available number of CPUs. This will happen only to the extent that such

valleys do not occur after a barrier at the end of the period of time where there is an abundance

of parallelism, or that the delayed execution of tasks that lost the competition for the CPU does

not lead to further delays in later conjuncts through variable dependencies.

The best way to measure this effect is to visually compare the Parconj running self curves

for the conjunction taken from two different systems, e.g. one with four CPUs and one with eight.

However, given measurements taken from e.g. a four CPU system, it should also be possible to

predict with some certainty what the curve would look like on an eight CPU system, by using

the times and dependencies recorded in the four-CPU trace to simulate how the scheduler would

handle the conjunction on an eight CPU machine. Unfortunately, the simulation cannot be exact

unless it correctly accounts for everything, including cache effects and the effects on the GC system.

The most obvious use of the Parconj running self curve of a conjunction is to tell program-

mers whether and to what extent that parallel conjunction can exploit the available CPUs.

Par
onj running self and des
endants is the number of CPUs that are actually used by a

given parallel conjunction and its descendants. This metric has the same relationship to Parconj

running self as Parconj runnable self and descendants has to Parconj runnable self.

Its main use is similar to the main use of Parconj running self: to tell programmers whether

and to what extent that parallel conjunction and its descendants can exploit the available CPUs.

This is important because a conjunction and its descendants may have enough parallelism even if

the top-level conjunction by itself does not, and in such cases the programmer can stop looking for

more parallelism, at least in that part of the program’s execution timeline.

Par
onj available CPUs is the number of CPUs available to a given parallel conjunction.

Scanning through the entire trace, we can compute and record the number of CPUs being used

at any given time during the execution of the program. For any given parallel conjunction, we

can also compute Parconj running self and descendants, the number of CPUs used by

that conjunction and its descendants. By taking the difference between the curves of those two

numbers, we can compute the curve of the number of CPUs that execute some task outside that

conjunction, Subtracting that difference curve from the constant number of the available CPUs

gives the number of CPUs available for use by this conjunction.
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This number’s maximum, time-weighted average and the shape of the curve of its value over

time, averaged over the different dynamic occurrences of a given static parallel conjunction, tell

programmers the level of parallelism they should aim for. Generating parallelism in a conjunction

that consistently exceeds the number of CPUs available for that conjunction is more likely to lead

to slowdowns from overheads than to speedups from parallelism.

Par
onj 
ontinue on before is the frequency, for any given parallel conjunction, that

the code after the conjunction will continue executing on the same CPU as the code before the

conjunction. If the parallel conjunction as a whole took only a small amount of time, then CPUs

other than the original CPU will still have relatively cold caches, even if they ran some part of the

parallel conjunction. We want to keep using the warm cache of the original CPU. The better the

scheduling strategy is at ensuring this, the more effectively the system as a whole will exploit the

cache system, and the better overall system performance will be.

Par
onj 
ontinue on last is the frequency, for any given parallel conjunction, that the

code after the conjunction will continue executing on the same CPU as the last conjunct to finish.

If the parallel conjunction as a whole took a large amount of time, then how warm the cache of a

CPU will be for the code after the conjunction depends on how recently that CPU executed either

a conjunct of this conjunction or the code before the conjunction. Obviously, all the conjuncts

execute after the code before the conjunction, so if the conjunction takes long enough for most

of the data accessed before the conjunction to be evicted from the cache, then only the CPUs

executing the conjuncts will have useful data in their caches. In the absence of specific information

about the code after the conjunct preferentially accessing data that was also accessed (read or

written) by specific conjuncts, the best guess is that the CPU with the warmest cache will be the

one that last executed a conjunct of this conjunction. The more often the scheduling strategy

executes the code after the conjunction on that CPU, the more effectively the system as a whole

will exploit the cache system, and the better overall system performance will be.

6.4.4 Conjunct specific metrics

There are several simple times whose maximums, minimums, averages and variances can be com-

puted for each static parallel conjunct.

Conjun
t time as spark is the time between the conjunct’s creation (which will be as a

spark) and the start of its execution (when the spark will be converted into a context).

Conjun
t time as 
ontext is the time between the start of the conjunct’s execution and

its end.

Conjun
t time blo
ked is the total amount of time between the start of the conjunct’s

execution and its end that the conjunct spends blocked waiting for a future.

Conjun
t time runnable: is the total amount of time between the start of the conjunct’s

execution and its end that the conjunct spends runnable but not running.

Conjun
t time running is the total amount of time between the start of the conjunct’s

execution and its end that the conjunct spends actually running on a CPU.

Since every context is always either running, runnable or blocked, the last three numbers must

sum up to the second (in absolute terms and on average, not in e.g. maximum or variance).

Programmers may wish to look at conjuncts that spend a large percentage of their time blocked

to see whether the dependencies that cause those blocks can be eliminated.
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If such a dependency cannot be eliminated, it may still be possible to improve at least the

memory impact of the conjunct by converting some of the blocked time into spark time. The

scheduler should definitely prefer executing an existing runnable context over taking a conjunct

that is still a spark, converting the spark into a context and running that context. When there

are no existing runnable contexts and it must convert a spark into a context, the scheduler should

try to choose a spark whose consumed variables (the variables it will wait for) are all currently

available. Of course, such a scheduling algorithm is not possible without information about which

variables conjuncts consume, information that schedulers do not typically have access to, but which

it is easy to give them.

If all the sparks consume at least one variable that is not currently available, the scheduler

should prefer to execute the one whose consumed variables are the closest to being available. This

requires knowledge of the expected behaviour of the program, to wit, the expected running times

of the conjuncts generating those variables. In some cases, that information may nevertheless be

available, derived from measured previous runs of the program, although of course it can only ever

be an approximation.

Note also this is only one of several considerations that an ideal scheduler should take into

account. For example, schedulers should also prefer to execute the conjunct (whether it is a context

or a spark) that is currently next on the critical path to the end of the conjunction. Knowledge of

the critical path is also knowledge about the future, and similarly must also be an approximation.

Ideally, the scheduler should take into account all these different considerations before coming to

a decision based on balancing their relevance in the current situation.

Conjun
t time after is the time, for each parallel conjunct, between the end of its execution

and the end of the conjunction as a whole. It is easy to compute this for every dynamic conjunct,

and to summarise it as a minimum, maximum, average and variance for any given static conjunct.

If the average Conjunct time aftermetrics for different conjuncts in a given parallel conjunction

are relatively stable (have low variance) but differ substantially compared to the runtime of the

conjunction as a whole, then the speedup from the parallel execution of the conjunction will be

significantly limited by overheads. In such cases, the programmer may wish to take two conjuncts

that are now executed in parallel and execute them in sequence. Provided the combined conjunct

is not the last-ending conjunct, and provided that delaying the execution of one of the original

conjuncts does not unduly delay any other conjuncts that consume the data it generates, the

resulting small loss of parallelism may be more than compensated for by the reduction in parallelism

overhead. It is of course much harder to select the two conjuncts to execute in sequence if the

times after for at least some of the conjuncts are not stable (i.e. they have high variance).

Out of order frequen
y: given two parallel conjuncts A and B, with A coming logically

before B either by being to the left of B in some conjunction, or by some ancestor of A being

to the left of an ancestor of B in some conjunction, how much time does the system spend with

B running while A is runnable but not running, compared to the time it spends with either A

or B running? Ideally, when A and B are both runnable but the system has only one available

CPU, it should choose to run A. Since it comes logically earlier, the consumers that depend on its

outputs are also likely to come logically earlier. Delaying the running of A has a substantial risk

of delaying them, thus delaying the tasks depending on their outputs, and so on. Any efficient

scheduling algorithm must take this effect into consideration.
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Out of order s
heduling blo
ks another 
ontext: when tasks are executed out of

order, as described above, how much of the time is another context C blocked on a future produced

by A? This metric describes how often out of order execution has a direct impact on another task.

Out of order s
heduling blo
ks another 
ontext t
: when tasks are executed out

of order, as described above, how much of the time do other contexts D,E, F . . . block waiting

on a future signalled by C,D,E, . . . which, eventually, depend on A? This metric considers the

transitive closure of the dependency chain measured by the previous metric.

6.4.5 Future specific metrics

Future suspend time first waits is, for each shared variable in each parallel conjunction,

the minimum, average, maximum and variance of the time of the first wait event on a future for

this variable by each consuming conjunct minus the time of the corresponding signal event. If this

value is consistently positive, then contexts never or rarely suspend waiting for this future; if this

value is consistently negative, then contexts often suspend on this future, and do so for a long

time. Programmers should look at shared variables that fit into the second category and try to

eliminate the dependencies they represent. If that is not possible, they may nevertheless try to

reduce them by computing the variable earlier or pushing the point of first consumption later.

Future suspend time all waits is, for each future in each dynamic parallel conjunction,

the minimum, average, maximum and variance of the time of all wait events minus the time of the

corresponding signal event, and the count of all such wait events. This metric helps programmers

understand how hard delaying the point of first consumption of a shared variable in a conjunct

is likely to be. Delaying the first consumption is easiest when the variable is consumed in only a

few places, and the first consumption occurs a long time before later consumptions. If the variable

is consumed in many few places, many of these points of consumption are just slightly after

the original point of first consumption, then significantly delaying the point of first consumption

requires eliminating the consumption of the shared variable in many places in the code, or at least

significantly delaying the execution of those many pieces of code.

Future suspend frequen
y first wait is, for the first wait event of each future, the

number of times the signal event occurs before the wait event versus the number of times the wait

event occurs before the signal event.

Future suspend frequen
y all waits for each wait event of each future, the number of

times the signal event occurs before the wait event versus the number of times the wait event occurs

before the signal event. Like Future suspend time all waits and Future suspend time first

wait, these two metrics can help programmers find out how often contexts are suspended waiting

for futures.

Waited future signal to 
onjun
t end time the average, maximum and variance of the

time between the signalling of a future on which another context is blocked and the end of the

parallel conjunct that signalled the future. This should be computed for every parallel conjunct

that signals at least one future. If the average is below the time that it normally takes for a context

made runnable to begin executing on an engine, and the variance is low, then it suggests that it is

better to execute the context made runnable by the signal on the same engine immediately after

the current conjunct finishes.

Future signal to 
onjun
t end time the average, maximum and variance of the time

between the signalling of a future and the end of the parallel conjunct that signalled that future.
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As above, this should be computed for every parallel conjunct that signals at least one future. This

value can be used to determine how often the optimisation described above will not be useful.

6.4.6 Presenting metrics to users

The ThreadScope tool is a graphical program. Its main display screen shows a continuous timeline

of the program’s execution on the horizontal axis, while along the vertical axis, the display is divided

into a discrete number of rows, with one row per CPU (per engine in Mercury, per capability in

Haskell). The colour of a display point for CPU n at time t shows what CPU n was doing at time

t: whether it was idle, doing GC, or executing the program. The time axis can be scaled to see an

overview of the execution as a whole or to focus on a specific period during the program run. If the

current scale allows for it, the display also shows the individual events that the on-screen picture

is derived from. Above the per-CPU rows ThreadScope shows a plot that is virtually identical to

the curve of the CPUs over time metric we defined above, and now it can do so for Mercury

programs as well as for Haskell programs.

The ThreadScope GUI includes different views, including a view that can provide reports to

the user, including simple scalar data about the profiled program run. This data already includes

GHC’s equivalent of the GC stats and Mutator vs GC time metrics; we could easily use this

to report our metrics. It is also trivial to add a new view that allows the user to input the number

of call sequence counts (CSCs) executed by a sequence version of the same program on the same

data, which would allow the tool to compute and display the value of the Nanosecs per call

metric.

We plan to modify the ThreadScope GUI so that if the user hovers the pointer over the rep-

resentation of an event connected with a parallel conjunction as a whole (such as a START PAR -

CONJUNCTION or END PAR CONJUNCTION event), they get a menu allowing them to select one of the

conjunction-specific metrics listed above. The system should then compute and print the selected

metric. Similarly if the user hovers the pointer over the representation of an event connected

with a specific parallel conjunct, they should be able to ask for and get the value of one of the

conjunct-specific metrics.

We plan to add to ThreadScope a view that lists all the parallel conjunctions executed by the

program. (The information needed for that list is available in the STRING events that record strings

representing the static ids of the executed parallel conjunctions.) By selecting items from this list,

the tool should be able to print summaries from all the dynamic occurrences of the conjunction for

any of the conjunction-specific metrics. It should also be able to take users to all those occurrences

in the main display.

We also plan to add to ThreadScope a mechanism that allows the user to request the generation

of a plain text file in a machine-readable format containing all the metrics that may be of interest

to our automatic parallelisation tool. We want our tool to be able to compare its predictions of

auto-parallelised programs with metrics derived from actual measurements of such programs, so

that we can help tune its performance to reduce the resulting discrepancies.

6.5 Preliminary examples

Some of our early examples use only the ThreadScope features introduced by the GHC devel-

opers. We modified Mercury’s runtime system to write out compatible log files using only the
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Figure 6.1: A profile of the raytracer

events in Section 6.2. Using this system we were able to see the ThreadScope profiles of the ray-

tracer (Figure 6.1) and the mandelbrot image generator (Figure 6.2), two of the example programs

from previous chapters. These profiles were generated on an eight processor machine, using eight

Mercury engines. In both figures, green areas in the eight lower rows indicate when each of the

eight Mercury engines was executing a context. Orange areas indicate when that engine initiated

garbage collection. The top-most row shows, at each point in time, how many engines are executing

contexts.

In Figure 6.1 we can see the effect on runtime of the garbage collector (GC). The mutator is

interrupted many times for short periods of time while the GC runs. This profile was generated

with the default initial heap size, therefore GC events occur quite frequently.

The mandelbrot program has a much lower memory allocation rate. One collection event can

be seen roughly in the middle of the execution profile (Figure 6.2), and there is another one that

cannot be seen at the beginning of the execution2. After the visible GC event, we can see that the

third and fifth engines do not resume their work immediately; this is a potential area of optimisation

that runtime system programmers could improve.

In Section 3.1 we spoke about the impact of garbage collection in detail. The data for Table 3.2

in that section was collected using ThreadScope. In particular we used the GC stats and Mu-

tator vs GC time metrics. Figure 6.3 shows this data for the raytracer using initial heap sizes

of 16MB and 512MB. They report data averaged over eight executions, as our command line tool

supports merging ThreadScope reports. We can see that the number of collections, the average

time of a collection, and the total time spent performing collection vary dramatically, which we

explored in detail in Section 3.1.

2The ThreadScope tool allows us to zoom into executions, and small events such as very short garbage collections
can be seen with higher magnification.
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Figure 6.2: A profile of the mandelbrot program

Basic Statistics

Number of engines: 4

Total elapsed time: 13.46s

Startup time: 1.89ms 0.0%

Running time: 13.45s 100.0%

Number of collections: 288

Total GC time: 7.05s 52.4%

Total Mut time: 6.40s 47.6%

Average GC time: 24.48ms

(a) 16MB initial heap size

Basic Statistics

Number of engines: 4

Total elapsed time: 6.96s

Startup time: 1.89ms 0.0%

Running time: 6.95s 100.0%

Number of collections: 26

Total GC time: 1.25s 17.9%

Total Mut time: 5.71s 82.1%

Average GC time: 47.96ms

(b) 512MB initial heap size

Figure 6.3: Basic metrics for the raytracer
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We have not yet implemented any more advanced metrics. However, even our simplest metrics

have already been useful.

6.6 Related work and conclusion

Many parallel implementations of programming languages come with visualisation tools since (as

we argued in the introduction) the people writing parallel programs need such tools to understand

the actual behaviour of their programs, and the people implementing those languages find them

useful too. Such tools have been created for all kinds of programming languages: imperative (such

as in Visual Studio), functional (Berthold and Loogen [10], Loidl [75], Runciman and Wakeling

[95] among others) and logic (Foster [39], Vaupel et al. [111] and the systems cited by Gupta et al.

[47]).

Many of these visualisers share common ideas and features. For example, many systems (in-

cluding ThreadScope) use a horizontal bar with different parts coloured differently to display

the behaviour of one CPU, while many other systems use trees that display the structure of the

computation. (The latter approach is more common among visualisers for sequential languages.)

Nevertheless, each visualiser is necessarily oriented towards giving its users what they want, and

the users of different systems want different information, since they are using different languages

based on different concepts. For example, functional languages have no concept of parallel conjunc-

tions, and their concept of data flow between computations is quite different from Mercury’s, and

users of concurrent logic programming languages such as Concurrent Prolog, Parlog and Guarded

Horn Clauses have quite different concerns from users of Mercury. A concurrent logic program-

mer’s concerns might include where to disable parallelism; a Mercury programmer might instead

be concerned with where to introduce parallelism.

We know of only one visualiser for a not-inherently-concurrent logic programming language

that does nevertheless support dependent AND-parallelism: VACE [111]. However, the ACE

system supports OR-parallelism and independent AND-parallelism as well as dependent AND-

parallelism, and its features do not seem designed to help programmers exploit dependent AND-

parallelism better. As far as we know, no-one has built a profiler for a dependent AND-parallel

logic programming language with the capabilities that we propose. We haven’t yet built one either,

but we are working on it.



164 CHAPTER 6. VISUALISATION



Chapter 7

Conclusion

In this chapter we summarise the contributions of the previous four chapters, emphasising on how

all the chapters fit together.

Chapter 3 investigated a number of problems that affected the performance of parallel Mercury

programs, because before we could work on automatic parallelism, we had to fix them. These

problems included the negative performance effects of garbage collection (GC), the issues with the

execution of sparks, and the behaviour of contexts in right-recursive code. While in Chapter 3

we did not fix the negative performance effects of garbage collection or the behaviour of contexts

in right-recursive code, we did find workarounds that reduced the impact of both these problems.

We also made general improvements, such as an efficient implementation of work stealing, which

fixed a spark scheduling problem. Without work stealing the runtime system would commit to

either the parallel or sequential execution of a spark too early, which made a frequently incorrect

assumption about whether an idle engine would be available to execute the spark. By using work

stealing, the scheduling decision is made when the spark is either executed by its owner, or stolen

by a thief, which is the first point in time that it is known if there is an idle engine (the thief).

Chapter 4 describes a unique way to use profiling data to find profitable dependent parallelism.

We made several novel contributions. Most significantly, to the best of our knowledge, our analysis

is the first that estimates how dependencies affect the parallelism in parallel conjunctions of any

size and with any number of dependencies. As the analysis algorithm executes, it mimics the same

execution steps that our runtime system would do, as described in Chapter 2, the background, and

Chapter 3, our modifications to the runtime system. Chapter 4’s other contributions include an

algorithm that selects the best parallelisation of any conjunction from the 2N−1 possibilities. This

algorithm will not explore some parts of the search space that will not provide a solution better

than the best solution so far (branch and bound). It will also switch to a greedy algorithm that

runs in O(N) time if the search is taking too long. For small values of N a complete search is used

and for larger values of N a greedy (linear) search is sued.

In Chapter 5 we describe and fix a pathological performance problem that occurs in most

singly recursive code. Our solution is a novel program transformation that fixes this problem

by restricting the number of contexts that such code can use. Our transformation also allows

us to take advantage of tail recursion inside parallel conjunctions, if the original sequential code

supports tail recursion. This is important as it allows parallel Mercury programs to operate on

data with unbounded size. Programs that work on large data structures are usually also those

that programmers wish to parallelise, therefore this transformation is critical for practical parallel

165



166 CHAPTER 7. CONCLUSION

programming in Mercury. While the transformation in this chapter supersedes the workarounds

in Chapter 3, the context limit work around is still useful when the transformation presented in

this chapter cannot be applied, such as in divide and conquer code.

In Chapter 6 we proposed modifications to both Mercury and ThreadScope that allow pro-

grammers to visualise the parallel profile of their Mercury program. We have enough of this

system implemented to know that it is feasible and that the completed system will be able to

provide some very powerful analyses and visualisations of Mercury programs. We described many

different analyses and how each could be implemented. We believe that these will be useful for

programmers trying to parallelise their Mercury programs, as well as implementors working on the

runtime system and/or automatic parallelisation tools. Someone working on the runtime system

can use Mercury’s support for ThreadScope to profile the parallel runtime system and tune it for

better performance, while someone working on automatic parallelism can use data gained through

ThreadScope to spot performance problems that need attention, and to adjust the values that

represent the costs of parallel execution overheads in the cost model.

7.1 Further work

Throughout this dissertation we have discussed further work that may apply to each contribution.

In this section we wish to describe further work that may apply to the whole system.

In Chapter 4, we said that the estimation of parallelism in dependent conjunctions (overlap

analysis) should be more aware of recursive code, such as loops. This should include an understand-

ing of how the loop control transformation affects the execution of loops, including the different

runtime costs that apply to loop controlled code. The overlap analysis could also be improved by

taking account of how many processors are available to execute the iterations of the loop. This

information, the number of available processors and the cost of each iteration, can be used to apply

other loop throttling methods, such as chunking.

Both loop control, and analysis of how recursion affects parallelism, should be applied to code

of other recursion types such as divide and conquer code. Provided that the two recursive calls

have parallel overlap, one can easily introduce granularity control near the top of the call graph of

a divide and conquer predicate.

In Chapter 6 we did not introduce any events for the loop control work, or discuss loop control

at all. This is also an area for further work: we must design events and metrics that can measure

loop controlled code. It would also be interesting to compare the profiles of loop controlled code

with the profiles of the same code without loop control.

We briefly discussed (above and in Chapter 6) that ThreadScope can be used to gather data

that could be used as input for the auto-parallelism analysis. This can inform the auto-parallelism

analysis in several ways. First, it will be able to convert between real time (in nanoseconds) and call

sequence counts. Second, it can analyse the profile to determine the actual costs (in either unit) of

the parallelisation overheads, and then use those metrics in re-application of the auto-parallelism

analysis. This may generate more accurate estimates of the benefits of parallelism, and could result

in better parallelisations. This is likely to be useful as different machines and environments will

have different costs for many overheads. Making it easy to determine the costs of overheads will

make the auto parallelisation tool easier to use. Finally, the auto parallelism analysis will be able to

determine if parallelising a particular computation was actually a good idea. It could then provide

a report about each parallel conjunction, saying how much that conjunction actually benefited from
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parallelism compared to the analysis tool’s estimate. Such reports would be extremely valuable

when extending the overlap analysis to account for more of the many factors affecting performance.

7.2 Final words

We have created a very powerful parallel programming environment, with good runtime behaviours

(Chapters 3 and 5), a very good automatic parallelisation system (Chapter 4) and the basis of a

useful visual profiler (Chapter 6). We have shown that this system is useful for parallelising some

small and medium sized programs, getting almost perfect linear speedups on several benchmarks.

Our system provides a solid basis for further research into automatic parallelism. We believe

that further development along these lines will produce a system that is capable of automatically

parallelising large and complex programs. We look forward to a future where parallelisation is just

another optimisation, and programmers think no more of it than they currently think of inlining.
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