Haskell Sucks!

Paul Bone

You asked for it

Lyndon: So how do you feel about Haskell?
Paul: | have feelings.

Lyndon: Good or bad?
Paul: It depends.

Lyndon: Do you want to give a talk about why Haskell sucks?

Paul: Ummm, okay.

It's not my fault if you don't like what | have to say. One of your own
asked for this.

Haskell Sucks!

But..

there are some things preventing me from making the claim that
Haskell Sucks!

« "X sucks" is not a useful criticism

» "90% of everything sucks" - Theodore Sturgeon (writer).
My criticism of Haskell is specific, rather than general

* I'm on good terms with the Simons.

» Haskell really is pretty damn good.

Haskell Sucks!

Haskell is pretty damn good but has some
critical problems

Paul Bone

| am not a Haskell expert.

| have been working on and in pure declarative languages for 8

years. My Ph.D. was awarded for my work on auto-parallelisation of
Mercury programs.

| have worked on:

» The Mercury implementation (in Mercury and C), A pure logic/
functional language.

» ThreadScope, a visualisation tool for GHC parallel execution (in
Haskell).

» | tutored declarative programming classes (Mostly Haskell).

Haskell Sucks!

| like Haskell

Haskell is a pure functional programming language. | love pure
functional programming! It has:

- Decent performance

* Good library support
« Support for parallelism and concurrency

« Books and other resources
* A strong community

Haskell Sucks!

So what's my problem with Haskell?

| have two main issues with Haskell:

- Monads
» Lazy evaluation

| will also discuss some more general problems that | believe affect
Monads, Laziness and Haskell generally.

Remember that everything sucks but different things just suck
differently.

Haskell Sucks!

What are Monads?

A monad is just a monoid in the category of endofunctors,
what's the problem?

— Phil Wadler

Haskell Sucks!

According to "The Internet” this is fictionally and satirically attributed
by Wadler by James Iry (http://tinyurl.com/so-monoid-is).

Maybe it is based on:

All told, a monad in X is just a monoid in the category of
endofunctors of X, with product x replaced by composition
of endofunctors and unit set by the identity endofunctor.

— Saunders Mac Lane from "Categories for the Working
Mathematician’

Haskell Sucks!

http://tinyurl.com/so-monoid-is

Anyway...

it doesn't matter who said it, it matters that it's funny. And it's funny
because there is truth to the joke:

Monads are an unfamiliar abstract concept that many people
struggle with.

People struggle, and yet we are overwhelmingly bad at providing
good explanations and learning material.

So, back to that question. What is a monad?.

Haskell Sucks!

10

Monads are...
There are many monad tutorials, including many of the form:
Monads are [like]...

Space Suits, Toxic Waste, Burritos.

This is a symptom of the problem with Monads: they're a very
abstract thing, and difficult to learn.

Brent Yorgey: Abstraction, intuition, and the “monad tutorial
fallacy” http://tinyurl.com/monad-tut-fallacy

Haskell Sucks!

11

http://tinyurl.com/monad-tut-fallacy

Monads are...

M is a monad such that:

bind::Vab*Ma—-»(a@a->Mb)->Mb
return::Vaca—-Ma Simple as that!

This only makes sense if you already know what a monad is.

Think back to when you finally got monads and understood this, how
did it feel?

It felt good you probably even felt proud of yourself. You feel good
because you solved a difficult problem.

Thoughts: Maybe this is no worse than learning recursion or
pointers.

Haskell Sucks! 12

Monads are , they're used for many things in
Haskell:

» Controlling side-effects, - Reading and writing streams,
- Handling errors, - Nondeterministic search,
- Managing state, Anything else!

Monads are so useful, that | have a favorite: L1st can be used with
lazy evaluation to perform non-deterministic search!

Do you have a favorite?

Haskell Sucks! 13

Using monads

The I0 monad makes it convenient to sequence |10 operations.
putStr "Hello " >>= (\ -> putStrLn "world!")
Of course it looks better with do notation

do putStr "Hello "
putStrLn "world!"

Haskell Sucks!

14

How about error handling

foo :: Either String a
foo = case computeSomething of

Left X -> case computeSomethingElse x of

Left y -> computeAnotherThing x y
Right e -> Right e
Right e -> Right e

The E1ther monad provides simple error handling.

foo :: Either String a
foo = do x <- computeSomething

y <- computeSomethingElse X
computeAnotherThing x y

Haskell Sucks!

15

The Data.Binary.Get assists with reading binary data.

readEvent :: Get Event
readEvent = do time stamp <- getWord64be
1d <- getWord32be
payload <- readEventData
return $ Event time stamp id payload

Haskell Sucks! 16

We can use the Writer monad to create a logging facility

logMsg :: String -> Writer [Entry] ()
logMsg m = tell [m]

something :: Writer [Entry] Something
something = do a <-

LlogMsg "Computing something"
b <- ...
return $ makeResult a b

Example from wiki.haskell.org.

Haskell Sucks!

17

Combining monads

Monads are not naturally composable because one type constructor
must contain all the returned information.

The only way to combine monads is with monad transformers,
which are themselves monads. We can combine Get andWriter to
handle errors while reading binary data.

readEvDat :: WriterT [String] Get (Maybe EventData)
readEvDat = do type <- 1ift getWordl6be
case type of

O -> 1lift readStartEventData

1 -> 1lift readStopEventData
-> do hoist generalize

(logMsg ("Unknown ev...
return $ Nothing

Haskell Sucks! 18

Combining monads

readEvDat :: WriterT [String] Get (Maybe EventData)
readEvDat = do type <- 1ift getWordl6be
case type of

O -> Lift readStartEventData

1 -> 1ift readStopEventData

_ -> do hoist generalize

(logMsg ("Unknown ev...
return $ Nothing

Operations on the Get monad must be 11ifted into that monad.
And a monad morphism is used to convert from the Writer monad
tothe WriterT monad.

Usually programmers will write wrapper functions to do this,
nevertheless it's boilerplate code and work that could have been
avoided.

Haskell Sucks! 19

Combining monads

readEvDat :: WriterT [String] Get (Maybe EventData)
readEvDat = do type <- 1ift getWordl6be
case type of

O -> Lift readStartEventData

1 -> 1ift readStopEventData
-> do hoist generalize

(logMsg ("Unknown ev...
return $ Nothing

The monads form a stack and now precedence of the monads

affects which version of >>=is called. This can alter flow control in
surprising ways.

Monad transformers are a kludge for the lack of composability for
monads.

Haskell Sucks! 20

Monads: summary

- Monads are an unfamiliar abstract concept.

* Monads are not explained well.

- Monads are a significant barrier to Haskell adoption.
* Monads do not compose.

- Monad stacks do not solve the composition problem.

« Monads and other abstractions can hide relevant details.

Thoughts: People have a tendency to over-complicate things, then
they reward themselves for solving difficult problems rather than
avoiding them.

* Don't work around a problem that can be solved.
* Don't solve a problem that can be avoided.

Haskell Sucks! 21

Monads: alternatives

- Make monads available, but not required
» Don't over-use monads (or any other feature)

- Maybe provide other means of managing state, such as
unigueness types.

Haskell Sucks!

22

Lazy evaluation

In some ways lazy evaluation is the elephant in the room, with
monads getting all the attention.

We mostly don't notice it, until we do something like use a larger
data set.

foldl or foldr?

Haskell Sucks!

23

foldl or foldr

foldr f z [] = Z
foldr f z (x:xs) f x (foldr f z xs)

In a strict language foldr is not tail recursive because its higher
order value is strict, and must be evaluated after the recursive call
has returned but before the current call can return. foldr is always
less efficient.

In Haskell the higher order value is sometimes lazy. When it is lazy it
returns immediately without evaluating either argument. Sometimes
foldr is more efficient as it can even avoid evaluating the tail of the
list.

Haskell Sucks! 24

foldl or foldr

foldl f z [] = Z
foldl f z (x:xs) let z' = f z x
in foldl f z' xs

In a strict language foldl is tail recursive because it's final call is

the recursive call — that's all there isto it! foldl is always more
efficient.

In Haskell the context of the call to foldl is sometimes lazy. When
it is lazy it constructs a long chain of thunks in memory. Sometimes
foldl is more efficient (in a strict context).

So what if the context of the call is lazy and f is strict?

Haskell Sucks! 25

foldl' f z []
foldl' f z (x:xs)

Z
let z' = f z x
in seq z' (foldl' f z' xs)

se(introduces strictness to make foldl efficient.
But foldl' is the most efficient only when T is also strict.

When to use foldl, foldr or foldl' is difficult for a seasoned
Haskell developer to know. It is impossible for a novice!

More generally. Lazy evaluation makes it difficult to reason about
performance.

Haskell Sucks!

26

Parallelism

Parallelism is expressed with par. Which creates a spark to evaluate
its first argument to Weak Head Normal Form (WHNF) and returns
the second argument.

par :: a ->b ->b

If the first argument represents a much larger computation, such as
a lazy list, only the first part of that may be evaluated. This will not
create enough work to make parallelism worth while.

Haskell Sucks! 27

To improve the amount of parallel work available, strictness must be
used. The pseq function will evaluate it's first argument to WHNF
before returning the second argument.

pseq :: a -=>b ->Db

But a lot of code would need to be annotated in this way. Plus, any
annotated code is now always strict, even when parallelism is not
used.

Haskell Sucks! 28

Parallel strategies were introduced as a means to allow developers
to control parallel and sequential evaluation.

parMap :: (a -> b) -> [a] -> [b]
parMap f xs = map f Xxs using parlList rseq

parList :: Strategy a -> Strategy [a]
parList strat = evallList (rparWith strat)

evallList :: Strategy a -> Strategy [a]
evallList strat [] = return []
evallList strat (x:xs) = do

X' <- strat x

Xs' <- evallist strat xs

return (x':xs')

Haskell Sucks!

Control.DeepSeq

Control.DeepSeq provides the NFData type class that may be
used to fully evaluate values (to Normal Form).

deepseq :: NFData a == a ->b -> b

Developers must implement NFData for each of their own types that
they'd like to fully evaluate using deepseq

Each of these things: pseq, strategies and deepseq, work around
problems with lazy evaluation.

Haskell Sucks! 30

* How do you know if some operation is lazy or strict?

* Developers must choose the appropriate algorithm depending on
their data and the call's context

- [t is difficult to reason about performance with laziness
- Parallelism and laziness interact poorly

» Stack traces are not available (fixed yet?)

» Lazy 10 can also cause surprises

What's the alternative?

» Strict by default
* Opt-in laziness.

Haskell Sucks! 31

Mercury

Mercury is a pure logic / functional language. It has strong types,
modes and determinisms.

http://mercurylang.org

Mercury also sucks.

Haskell Sucks!

32

Plasma

Plasma is very new functional language project, it is mostly
vapourware and therefore also sucks.

http://plasmalang.org

Haskell Sucks!

33

YesLogic & Prince
| work for YesLogic.
http://yeslogic.com

Our Prince product typesets PDFs from HTML+CSS.
These slides are created with Prince!

http://princexml.com

Haskell Sucks!

34

	Haskell Sucks!
	Paul Bone
	You asked for it
	But..

	Haskell is pretty damn good but has some critical problems
	Paul Bone
	Who am I to dis Haskell anyway?
	I like Haskell
	So what's my problem with Haskell?
	What are Monads?
	What are Monads?
	Anyway...
	Monads are...
	Monads are...
	Using monads
	Using monads
	Using monads
	Using monads
	Using monads
	Combining monads
	Combining monads
	Combining monads
	Monads: summary
	Monads: alternatives
	Lazy evaluation
	foldl or foldr
	foldl or foldr
	foldl'
	Parallelism
	Parallelism
	Parallel strategies
	Control.DeepSeq
	Lazy evaluation: summary
	Mercury
	Plasma
	YesLogic & Prince

