
PLASMA
Programming Language

Paul Bone

29th of August 2016

http://plasmalang.org

http://plasmalang.org


Quick facts

Paradigm:
Purely functional, effects are controlled by Resources.

Typing discipline:
Strong, Static, ADTs, Parametric polymorphism, Interfaces and
probably Higher kinded types

Evaluation discipline:
Strict

Runtime:
Custom virtual machine and in the future native code generation

Interoperability:
FFI to interoperate with C libraries

Plasma - http://plasmalang.org 2



Functional programming is great, but...

Functional programming
combines the flexibility and
power of abstract mathematics
with the intuitive clarity of
abstract mathematics.

— Randall Munroe (xkcd
#1270)

Pure functional programming is
expressive, safer and offers
reasonable performance. But it is
often very weird and overly abstract.

Plasma - http://plasmalang.org 3



Goals

1. Combine declarative and imperative programming features.

◦ Safety guarantees of strongly typed pure FP.

◦ Pure FP is easier to reason about.

◦ Imperative-like syntax is familiar for FP novices.

◦ Loops, arrays and other imperative programming features
benefit both experienced developers and novices.

Plasma - http://plasmalang.org 4



Goals

2. Simplicity

Keeping things simple is an excellent engineering practice. It also
makes the language and tools easier to understand.

◦ Reduce the emphasis and dependence on abstract concepts
like monads. Allow them to be learnt gradually.

◦ Sensible names: Mappable rather than Functor.

◦ Consistent syntax: things that are different will look different.

◦ Good tooling.

Plasma - http://plasmalang.org 5



Goals

3. Excellent parallelism and concurrency support.

Channels, mvars, semaphores, streams, futures and STM provide
safer abstractions than traditional threads and locks
concurrency.

Deterministic parallelism makes parallelism available without
constraining the structure of your program or affecting its
declarative semantics. Eg: Haskell's par function or strategies.

Automatic parallelism introduces deterministic parallelism as a
compiler optimisation.

Plasma - http://plasmalang.org 6



Hello world!

module Hello

export main
import io

func main() -> Int using IO {
io.print!("Hello world!")
return 0

}

Resources are used to manage effects. A function call with an effect
has an annotation (!) to warn anyone reading the code.
The compiler will check that the suitable resource is available in this
function.

Plasma - http://plasmalang.org 7



Resources

• Resources can be used or observed. Statements that observe the
same resource may be re-ordered.

• Different resources exist. Some, like IO, subsume others.

• Some resources can be linked to values, like file handles. These
values must be unique (Not designed yet).

• Higher order code must handle resources correctly. Resource
usage must be polymorphic.

• Thanks to Peter Schachte and his Wybe language for this idea

Plasma - http://plasmalang.org 8

http://people.eng.unimelb.edu.au/schachte
http://people.eng.unimelb.edu.au/schachte/papers/wybeintro.pdf


Statements

Variables are single assignment, once bound they cannot be
rebound or shadowed.

c = 25
f = c*9/5 + 32
io.print!("25c is " ++ show(f) ++ "f\n")

Is like writing let expressions in a language like OCaml:

let c = 25 in
let f = c*9/5 + 32 in

io.print!("25c is " ++ show(f) ++ "f\n")

Plasma - http://plasmalang.org 9



Conditionals

Variables produced by the branching structure and used outside (r),
must be produced on all branches.

if (cond) {
x = ...
r = f(x)

} else {
r = ...

}

io.print!("Result is " ++ show(r) ++ "\n")

x is local to the first branch.

Plasma - http://plasmalang.org 10



Conditionals

This does not apply to branches that do not fall through.

maybe_file = open!(filename, mode)
match (maybe_file) {
case Ok(file) -> { }
case Error(error) -> {

return Error(error)
}

}

result = process!(file)
close!(file)

return Ok(result)

Plasma - http://plasmalang.org 11



Conditionals

This works easily for conditionals that produce multiple variables.

if (cond) {
x = e1
y = e2

} else {
x = e3
y = e4

}

Conditionals can also be used as expressions.

x, y = if (cond)
then e1, e2
else e3, e4

Plasma - http://plasmalang.org 12



Loops

for [x <- xs] {
y = f(x)
output ys = list of y

}

Of course map can also be used. However loop syntax is both:

• familiar and

• very powerful for complex loops

• easier to parallelise

Loops are inspired by SISAL.

Plasma - http://plasmalang.org 13

http://www2.cmp.uea.ac.uk/~jrwg/Sisal/00.Contents.html


Loops

A loop may take any number of inputs, and generate any number of
outputs.

for [x <- xs, y <- ys] {
…
output as = list of a
output bs = array of b

}

Outputs can also be reductions. They reduce a sequence of values
into a single value.

output maximum = max of x
output total = sum of y

Plasma - http://plasmalang.org 14



Loops

Pass values between loop iterations with accumulators.

for [x <- xs] {
accumulator warnings0 warnings initial []

y, new_warnings = process(x)
warnings = warnings0 ++ new_warnings

output ys = list of y
output warnings = value of warnings

}

This is just an example, it'd be better to use the concat_list
reduction.

Plasma - http://plasmalang.org 15



Loops

Valid loop inputs include lists, arrays, streams and generators.

Generators are implemented with coroutines, they can provide
values from any source.

for [x0 <- xs, id <- count_from(0)] {
x = add_id(x0, id)
output xs_dict = dictionary of id, x

}

Returned items are also build using coroutines.

You can define your own generators and reductions.

Plasma - http://plasmalang.org 16



• mvars • semaphores

Concurrency

The basic concurrency primitives (mvars &
semaphores) can be difficult to use, (but are
better than locks).

However they are needed to build more
advanced abstractions.

• readers / writers mvars

• read copy update mvars

• other multi-version
abstractions

Plasma - http://plasmalang.org 17



Concurrency

Several easier to use abstractions will also be available. These are
not without their own drawbacks.

• channels

• futures

• green threads

• software transactional memory

• streams

• concurrent I/O

All of these have been proven to work for other languages. None of
them are novel or risky.

We also have plans for thread-aware garbage collection in the
future.

Plasma - http://plasmalang.org 18



Software transactional memory

A transaction either completes, or is rolled back.

atomic {
x = read!(stm_x)
y = read!(stm_y)

new_x = compute(x, y)
update!(stm_x, new_x)

z = ...
update!(stm_z, z)

}

For example, if another thread modifies stm_x before this thread
updates stm_z and completes the transaction, then this transaction
will be rolled back.

Plasma - http://plasmalang.org 19



Deterministic parallelism

Parallel evaluation that does not affect the declarative semantics of
the program — the program always produces the same results.

In Haskell par, stratergies and Monad.Par all create deterministic
parallelism.

C/C++ and Fortran support parallel loops with OpenMP.

#pragma omp parallel for
for(int x=0; x < width; x++) {
for(int y=0; y < height; y++) {

finalImage[x][y] = RenderPixel(x,y, &sceneData);
}

}

Plasma - http://plasmalang.org 20



Deterministic parallelism

SISAL supported parallel loops and stream processing. It further
optimises its loops at compile time and rivaled Fortran in
performance.

parallel for [x <- xs] chunk 20 {
y = f(x)
output ys = list of y

}

Plasma's loops and support for arrays and streams is inspired by
SISAL (and also Data Parallel Haskell).

These code snippets are pseduo-Plasma, the actual syntax may be
different.

Plasma - http://plasmalang.org 21

http://www2.cmp.uea.ac.uk/~jrwg/Sisal/00.Contents.html
https://wiki.haskell.org/GHC/Data_Parallel_Haskell


Deterministic parallelism

parallel for [x <- xs] {
y = f(x)
output total = sum of y

}

This loop can be executed in parallel because sum can be split into
independed sub-computations.

• addition is associtive: A + (B + C) = (A + B) + C

• addition has an identity element (zero)

In other words, addition is a monoid.

There are several other ways to parallelise reductions.

Plasma - http://plasmalang.org 22



Deterministic parallelism

Of course, this loop could be parallelised without parallelising the
reduction.

parallel for [x <- xs] {
y = f(x)
output ys = list of ys

}
for [y <- ys] {
output total = sum of y

}

The best way to parallelise any code depends on the that specific
code, and its typical data. Like most other optimisations, this should
be automatic and preformed by the compiler.

Plasma - http://plasmalang.org 23



Deterministic parallelism

We could create a parallel stream between two tasks.

parallel {
task {

parallel for [x <- xs] {
y = f(x)
output ys = stream of ys

}
}
task {

for [y <- ys] {
output total = sum of y

}
}

}

Plasma - http://plasmalang.org 24



Automatic parallelism

P. Bone, Automatic Parallelisation for Mercury, PhD Thesis,
Department of Computing and Information Systems, The
University of Melbourne, Australia, 2012.

Plasma - http://plasmalang.org 25



Automatic parallelism

For Mercury we implemented profiler feedback directed automatic
parallelism.

• We were able to automatically parallelise a sequence of
dependent goals, and account for their dependecies.

• It also handled basic loops.

We will base Plasma's automatic parallelism on this work.
Additionally:

• With Plasma's loops we can take this much further, and
parallelise loops differently depending upon the properties of
their reductions and accumulators.

• Recognize other forms of parallelism, such as stream
processing.

Plasma - http://plasmalang.org 26



Hard at work

Status

Basic bytecode interpreter

Basic compiler pipeline

Hello world

Basic expressions

Conditionals

Loops

Types

Resources

Parallelism and concurrency

Plasma is a labour of love, I work on it in my spare time.

Plasma - http://plasmalang.org 27



How can I help?

Development is at an early stage and it may be unclear how to
contribute.

• Feedback and support are incredibly welcome.
Just letting us know that you want this to exist is helpful!

• Check out the reference manual, tell us if you find any problems.

• Try to build and run Plasma, including the tests (requires
Mercury).

• There may items in docs/todo.txt that you can help with. We
already have four contributors (including myself).

• Subscribe to the mailing lists and/or follow us on twitter to stay
up-to-date.

Plasma - http://plasmalang.org 28



About

Plasma

WWW
http://plasmalang.org

Twitter
@PlasmaLang

Mercury

WWW
http://mercurylang.org

Twitter
@MercuryLang

Paul Bone

WWW
http://paul.bone.id.au

Twitter
@Paul_Bone

Prince & YesLogic

WWW
http://princexml.com

WWW
http://yeslogic.com

Plasma - http://plasmalang.org 29

http://plasmalang.org
https://twitter.com/PlasmaLang
http://mercurylang.org
https://twitter.com/MercuryLang
http://paul.bone.id.au
https://twitter.com/Paul_Bone
http://princexml.com
http://yeslogic.com

	PLASMA
	Quick facts
	Functional programming is great, but...
	Goals
	Goals
	Goals
	Hello world!
	Resources
	Statements
	Conditionals
	Conditionals
	Conditionals
	Loops
	Loops
	Loops
	Loops
	Concurrency
	Concurrency
	Software transactional memory
	Deterministic parallelism
	Deterministic parallelism
	Deterministic parallelism
	Deterministic parallelism
	Deterministic parallelism
	Automatic parallelism
	Automatic parallelism
	Status
	How can I help?
	About
	Plasma
	Mercury
	Paul Bone
	Prince & YesLogic



