
PLASMA
Programming Language

Paul Bone

2nd of May 2017

http://plasmalang.org

http://plasmalang.org/


Quick facts

Paradigm:
Purely functional, effects are controlled by Resources.

Typing discipline:
Strong, Static, ADTs, Subtyping, Parametric polymorphism,
Interfaces and probably Higher kinded types

Evaluation discipline:
Strict

Runtime:
Custom virtual machine and in the future native code generation

Interoperability:
FFI to interoperate with C libraries

Plasma - http://plasmalang.org 2



Functional programming is great, but...

Functional programming
combines the flexibility and
power of abstract mathematics
with the intuitive clarity of
abstract mathematics.

— Randall Munroe (xkcd
#1270)

Pure functional programming is
expressive, safer and offers
reasonable performance. But it is
often very weird and overly abstract.

Plasma - http://plasmalang.org 3



Goals

1. Combine declarative and imperative programming features.

◦ Safety guarantees of strongly typed pure FP.

◦ Pure FP is easier to reason about.

◦ Imperative-like syntax is familiar for FP novices.

◦ Loops, arrays and other imperative programming features
benefit both experienced developers and novices.

Plasma - http://plasmalang.org 4



Goals

2. Simplicity

Keeping things simple is an excellent engineering practice. It also
makes the language and tools easier to understand.

◦ Reduce the emphasis and dependence on abstract concepts
like monads. Allow them to be learnt gradually.

◦ Sensible names: Mappable rather than Functor.

◦ Consistent syntax: things that are different will look different.

◦ Good tooling.

Plasma - http://plasmalang.org 5



Goals

3. Excellent parallelism and concurrency support.

Channels, mvars, semaphores, streams, futures and STM provide
safer abstractions than traditional threads and locks
concurrency.

Deterministic parallelism makes parallelism available without
constraining the structure of your program or affecting its
declarative semantics. Eg: Haskell's par function or strategies.

Automatic parallelism introduces deterministic parallelism as a
compiler optimisation.

Plasma - http://plasmalang.org 6



Hello world!

module Hello

export main
import io

func main() -> Int using IO {
io.print!("Hello world!")
return 0

}

Resources are used to manage effects. A function call with an effect
has an annotation (!) to warn anyone reading the code.
The compiler will check that the suitable resource is available in this
function.

Plasma - http://plasmalang.org 7



Resources

• Resources can be used or observed. Statements that observe the
same resource may be re-ordered.

• Different resources exist. Some, like IO, subsume others.

• Some resources can be linked to values, like file handles. These
values must be unique (Not designed yet).

• Higher order code must handle resources correctly. Resource
usage must be polymorphic.

• Thanks to Peter Schachte and his Wybe language for this idea

Plasma - http://plasmalang.org 8

http://people.eng.unimelb.edu.au/schachte
http://people.eng.unimelb.edu.au/schachte/papers/wybeintro.pdf


Statements

Variables are single assignment, once bound they cannot be
rebound or shadowed.

c = 25
f = c*9/5 + 32
io.print!("25c is " ++ show(f) ++ "f\n")

Is like writing let expressions in a language like OCaml:

let c = 25 in
let f = c*9/5 + 32 in

io.print!("25c is " ++ show(f) ++ "f\n")

Plasma - http://plasmalang.org 9



Conditionals

Variables produced by the branching structure and used outside (r),
must be produced on all branches.

if (cond) {
x = ...
r = f(x)

} else {
r = ...

}

io.print!("Result is " ++ show(r) ++ "\n")

x is local to the first branch.

Plasma - http://plasmalang.org 10



Conditionals

This does not apply to branches that do not fall through.

maybe_file = open!(filename, mode)
match (maybe_file) {
case Ok(file) -> { }
case Error(error) -> {

return Error(error)
}

}

result = process!(file)
close!(file)

return Ok(result)

Plasma - http://plasmalang.org 11



Conditionals

This works easily for conditionals that produce multiple variables.

if (cond) {
x = e1
y = e2

} else {
x = e3
y = e4

}

Conditionals can also be used as expressions.

x, y = if (cond)
then e1, e2
else e3, e4

Plasma - http://plasmalang.org 12



Types

Type systems can be dry and maths-heavy, but they're an important
part of a programming language. This is work in progress.

Types are either built-in like Int, UInt, Int32, functions etc,
or defined by developers or libraries.

A type representing a playing card:

type PlayingCard = Card(
suit    : Suit,
number  : UInt8

)
| Joker

type Suit = Hearts | Diamonds | Spades | Clubs

Plasma - http://plasmalang.org 13



Types

type PlayingCard = Card(
suit    : Suit,
number  : UInt8

)
type Suit = Heart | Diamond | Spade | Club

This is an Algebraic Data Type (ADT): A PlayingCard Card is made
up of a Suit and a UInt8. A Suit is a Heart or Diamond or...

Plasma - http://plasmalang.org 14



Types

ADTs will also permit subtyping. By defining:

type PlayingCardOrJoker = Card(
suit    : Suit,
number  : UInt8

)
| Joker

I can now also play games with jokers, and re-use a lot of code. Any
code that accepts as input PlayingCardOrJoker will work for
PlayingCard.

Plasma - http://plasmalang.org 15



Pattern Matching

ADTs work naturally with pattern matching

match (card) {
Card(_suit, number) -> {
value = number

}
Joker -> {
value = 0

}
}

Plasma - http://plasmalang.org 16



Pattern Matching

Pattern matching also works on other values. Cases are checked in
order and in this example, the last case matches any number and
binds m to it.

match (n) {
0 -> {
beer = "There's no beer!"

}
1 -> {
beer = "There's only one beer"

}
m -> {
beer = "There are " ++ show(m) ++

" bottles of beer"
}

}
Plasma - http://plasmalang.org 17



Types

Polymorphism will be supported. length calculates the length of a
list. x is a type variable (lowercase) it can represent any type. [x] is
a list of xs.

func length(l : [x]) -> UInt {
return match (l) {
[]       -> 0
[_ | l1] -> length(l1) + 1

}
}

This is also an example of match used as an expression.

Plasma - http://plasmalang.org 18



Types

Values can also be functions (in C this is a function pointer).

func map(f : a -> b, l : [a]) -> [b] {
return match (l) {
[]       -> []
[a | as] -> [f(a) | map(f, as)]

}
}

f is a function from a to b.

Plasma - http://plasmalang.org 19



Types

Interfaces provide additional expressive power, they're a bit like
typeclasses in Haskell, modules in ML or interfaces in Java.

interface Ord {
type t
func compare(t, t) -> CompareResult

}

Now it's possible for functions to require that a parameter provide an
Ord interface.

func sort(l : [Ord.x]) -> [Ord.x] {
...

}

Interfaces can also be parametrised by other interfaces.

Plasma - http://plasmalang.org 20



Loops

for [x <- xs] {
y = f(x)
output ys = list of y

}

Of course map can also be used. However loop syntax is both:

• familiar,

• very powerful for complex loops and

• easier to parallelise

Loops are inspired by SISAL.

Plasma - http://plasmalang.org 21

http://www2.cmp.uea.ac.uk/~jrwg/Sisal/00.Contents.html


Loops

A loop may take any number of inputs, and generate any number of
outputs.

for [x <- xs, y <- ys] {
…
output as = list of a
output bs = array of b

}

Outputs can also be reductions. They reduce a sequence of values
into a single value.

output maximum = max of x
output total = sum of y

Plasma - http://plasmalang.org 22



Loops

Pass values between loop iterations with accumulators.

for [x <- xs] {
accumulator warnings0 warnings initial []

y, new_warnings = process(x)
warnings = warnings0 ++ new_warnings

output ys = list of y
output warnings = value of warnings

}

This is just an example, it'd be better to use the concat_list
reduction.

Plasma - http://plasmalang.org 23



Loops

Valid loop inputs include lists, arrays, streams and generators.

Generators are implemented with coroutines, they can provide
values from any source.

for [x0 <- xs, id <- count_from(0)] {
x = add_id(x0, id)
output xs_dict = dictionary of id, x

}

Returned items are also build using coroutines.

You can define your own generators and reductions.

Plasma - http://plasmalang.org 24



• mvars • semaphores

Concurrency

The basic concurrency primitives (mvars &
semaphores) can be difficult to use, (but are
better than locks).

However they are needed to build more
advanced abstractions.

• readers / writers mvars

• read copy update mvars

• other multi-version
abstractions

Plasma - http://plasmalang.org 25



Concurrency

Several easier to use abstractions will also be available. These are
not without their own drawbacks.

• channels

• futures

• green threads

• software transactional memory

• streams

• concurrent I/O

All of these have been proven to work for other languages. None of
them are novel or risky.

We also have plans for thread-aware garbage collection in the
future.

Plasma - http://plasmalang.org 26



Software transactional memory

A transaction either completes, or is rolled back.

atomic {
x = read!(stm_x)
y = read!(stm_y)

new_x = compute(x, y)
update!(stm_x, new_x)

z = ...
update!(stm_z, z)

}

For example, if another thread modifies stm_x before this thread
updates stm_z and completes the transaction, then this transaction
will be rolled back.

Plasma - http://plasmalang.org 27



Deterministic parallelism

Parallel evaluation that does not affect the declarative semantics of
the program — the program always produces the same results.

In Haskell par, stratergies and Monad.Par all create deterministic
parallelism.

C/C++ and Fortran support parallel loops with OpenMP.

#pragma omp parallel for
for(int x=0; x < width; x++) {
for(int y=0; y < height; y++) {

finalImage[x][y] = RenderPixel(x,y, &sceneData);
}

}

Plasma - http://plasmalang.org 28



Deterministic parallelism

SISAL supported parallel loops and stream processing. It further
optimises its loops at compile time and rivaled Fortran in
performance.

parallel for [x <- xs] chunk 20 {
y = f(x)
output ys = list of y

}

Plasma's loops and support for arrays and streams is inspired by
SISAL (and also Data Parallel Haskell).

These code snippets are pseduo-Plasma, the actual syntax may be
different.

Plasma - http://plasmalang.org 29

http://www2.cmp.uea.ac.uk/~jrwg/Sisal/00.Contents.html
https://wiki.haskell.org/GHC/Data_Parallel_Haskell


Deterministic parallelism

parallel for [x <- xs] {
y = f(x)
output total = sum of y

}

This loop can be executed in parallel because sum can be split into
independed sub-computations.

• addition is associtive: A + (B + C) = (A + B) + C

• addition has an identity element (zero)

In other words, addition is a monoid.

There are several other ways to parallelise reductions.

Plasma - http://plasmalang.org 30



Deterministic parallelism

Of course, this loop could be parallelised without parallelising the
reduction.

parallel for [x <- xs] {
y = f(x)
output ys = list of ys

}
for [y <- ys] {
output total = sum of y

}

The best way to parallelise any code depends on the that specific
code, and its typical data. Like most other optimisations, this should
be automatic and preformed by the compiler.

Plasma - http://plasmalang.org 31



Deterministic parallelism

We could create a parallel stream between two tasks.

parallel {
task {

parallel for [x <- xs] {
y = f(x)
output ys = stream of ys

}
}
task {

for [y <- ys] {
output total = sum of y

}
}

}

Plasma - http://plasmalang.org 32



Automatic parallelism

P. Bone, Automatic Parallelisation for Mercury, PhD Thesis,
Department of Computing and Information Systems, The
University of Melbourne, Australia, 2012.

Plasma - http://plasmalang.org 33



Automatic parallelism

For Mercury we implemented profiler feedback directed automatic
parallelism.

• We were able to automatically parallelise a sequence of
dependent goals, and account for their dependecies.

• It also handled basic loops.

We will base Plasma's automatic parallelism on this work.
Additionally:

• With Plasma's loops we can take this much further, and
parallelise loops differently depending upon the properties of
their reductions and accumulators.

• Recognize other forms of parallelism, such as stream
processing.

Plasma - http://plasmalang.org 34



Hard at work

Status

Basic bytecode interpreter

Basic compiler pipeline

Hello world

Basic expressions

Conditionals

Types

Loops

Resources

Parallelism and concurrency

Plasma is a labour of love, I work on it in my spare time.

Plasma - http://plasmalang.org 35



How can I help?

Development is at an early stage and it may be unclear how to
contribute.

• Feedback and support are incredibly welcome.
Just letting us know that you want this to exist is helpful!

• Check out the online documentation, tell us if you find any
problems.

• Try to build and run Plasma, including the tests (requires
Mercury).

• There may items in docs/todo.txt that you can help with. We
already have four contributors (including myself).

• Subscribe to the mailing lists follow us on twitter or connect via
IRC to stay up-to-date.
http://plasmalang.org/contact.html

Plasma - http://plasmalang.org 36

http://plasmalang.org/docs/
http://mercurylang.org/
http://plasmalang.org/contact.html


About

Plasma

WWW
http://plasmalang.org

Twitter
@PlasmaLang

Mercury

WWW
http://mercurylang.org

Twitter
@MercuryLang

Paul Bone

WWW
http://paul.bone.id.au

Twitter
@Paul_Bone

Prince

WWW
http://princexml.com

Plasma - http://plasmalang.org 37

http://plasmalang.org/
https://twitter.com/PlasmaLang
http://mercurylang.org/
https://twitter.com/MercuryLang
http://paul.bone.id.au/
https://twitter.com/Paul_Bone
http://princexml.com/

	PLASMA
	Quick facts
	Functional programming is great, but...
	Goals
	Goals
	Goals
	Hello world!
	Resources
	Statements
	Conditionals
	Conditionals
	Conditionals
	Types
	Types
	Types
	Pattern Matching
	Pattern Matching
	Types
	Types
	Types
	Loops
	Loops
	Loops
	Loops
	Concurrency
	Concurrency
	Software transactional memory
	Deterministic parallelism
	Deterministic parallelism
	Deterministic parallelism
	Deterministic parallelism
	Deterministic parallelism
	Automatic parallelism
	Automatic parallelism
	Status
	How can I help?
	About
	Plasma
	Mercury
	Paul Bone
	Prince



